SUZLON

SUZLON

Presentation in the 'WinGrid Scientific Workshop on Power System Balancing and Operation with Large Shares of Wind Power'

Grid Code Requirements for Wind and Hybrid Power Plants: perspective from wind turbine Manufacturers

18th June 2021

Dr. Pukhraj Singh, pukhraj.singh@suzlon.com

All copyrights and other intellectual property rights, including trademarks, in all text, images, and other contents in this document, even if not specifically indicated as such, are the property of Suzlon Energy Limited or are included with the permission of the relevant owner. The contents of this document are strictly confidential and are addressed to the recipient only. Any reproduction, modification, distribution, transmission, republication or display of the contents of the contents of this document or parts thereof is strictly prohibited, unless with the explicit written prior consent of the disclosing Suzlon group company and on the condition that all copyrights and other proprietary rights are reflected correctly. Suzlon group reserves the right to make any changes and corrections to this document any time and without prior notification.

Suzion Company- Some Facts

- Founded in April 1995 with just three employees in Ahmedabad, Gujarat (India) and grown to over 7,000 employees and installations in 19 countries
- SUZLON combined with Senvion (sold April 2015) was the world's 6th largest with power company in 2014 in terms of cumulative installations
- Suzion supplied over 12,000 WTGs across the world to 1800+ customers and its cumulative installation base is 18.8 GW and growing and more than 300MW of Solar PV in India
- Market leader in India wrt installed capacity
- Stock listed on Bombay Stock Exchange (BSE) and National Stock Exchange (NSE) in India since IPO October 2005 with over 960,000 shareholders.
- Operations across North and South America, Asia, Australia, Europe and Africa
- Fully integrated supply chain with manufacturing facilities setup on three continents; North and South America, Asia
- Research and development of overall wind turbine technology in India, Germany and Denmark, blade development in The Netherlands and India.

Technology – Where We Are

Germany	Hamburg	 Management System Engineering, Drivetrain (D&I) Certification 	Pune	
	Rostock	Development & IntegrationDesign & Product Engineering		
The Netherlands	Hengelo	- Blade Development		
India	Pune	 Design & Product Engineering Technical Field Support Blade Engineering 	Rostock	
	Vadodara	- Blade Testing Center		
	Chennai	- Gear Box Team		
Denmark	Aarhus	- SCADA		

Best match between skills & location

burg

Renewable Energy Growth: Worldwide Overview

Installed renewable generating capacity in India

* Includes Hydro power, Wind, Solar power, Marine energy, Bioenergy and Geothern

**Source : IRENA Renewable Energy Statistics 2019

**Source (India) : CEA Annual Report 2019

Global Climate Change, Energy independence & security, growing electricity demand driving Renewable Energy installation,

Expected to become major source of electricity in developed countries by 2040 and beyond, 100% RE beyond 2050 in some developed

nations

RfS No : SECI/C&P/HPD/ISTS-VII/RfS/1200MW/082019

Issued on : 01.08.2019.

2. Selection of RE Power Developer for "Round-the-Clock" Supply of 400 MW RE Power

RfB No : SECI/C&P/RPD/RTC-I/RfS/400MW/102019

Issued on : 18.10.2019.

3. Setting up of 2500 MW ISTS-Connected Wind-Solar Hybrid Power Projects

RfS No : SECI/C&P/HPD/2500MW/HYB/T1/RfS/062018

Issued on : 22.06.2018

4. 160 MW Solar-Wind Hybrid Power Plant with BESS including 10 Years Plant O&M under International competitive bidding

RfB No : SECI/C&P/RfB/2018/160MWH/WB/01

Issued on : 17.08.2018.

1. Setting up of 1200 MW ISTS-Connected Wind-Solar Hybrid Power Projects

RfS No : SECI/C&P/HPD/T3/1200MW/RfS/012020

Issued on : 14.01.2020.

2. Setting up of 14 MW Solar Power Plants with 42 MWh BESS

RfS No : SECI/C&P/RfS/PMDP/LK/2020

Issued on : 31.01.2020.

3. Setting up of 4 MW Grid Connected floating Solar PV Power Project with 2 MW/1 MWh BESS

<u>*RfS No* : SECI/C&P/SPD/RfS/A&N/04MW/012020</u>

Issued on : 13.01.2020.

4. Procurement of 5000 MW power on "Round-the-Clock" basis, from RE Power Projects, complemented with power from Thermal Power Projects

RfS No. SECI/C&P/RPD/RTC-II/RfS/5000MW/032020

Issued on: 17.03.2020.

Typical Wind-Solar-storage Hybrid Park Configuration

To reduce generation variability, increased plant factor, competitive

Round-The-Clock (RTC) power

Objectives

To provide Round-The-Clock (RTC) power to the DISCOMs from renewable energy sources complemented/balanced with firm power from any other source or storage

- To address the issues of intermittency, limited hours of supply and low capacity utilization of transmission infrastructure
- New concept —bundling, wherein firm power from any other source or storage is bundled with renewable energy, and provided round-the-clock to the distribution company
- ➢ In other words, firm power from thermal/hydro or other sources or storage can be utilized to balance renewable energy and provide round the clock (RTC) power to the DISCOM thereby obviating the need for DISCOMs to balance power

RTC project Configuration

RE plant complemented with Thermal or any other source

Generator shall supply despatchable RE power in Round- the-Clock manner complemented with other firm sources

Load demand India basis

SUZLON

Peak demand in evening greater than morning

Wind Power could meet peak load demand using storage/conventional plant

Load demand India basis

Peak Power pricing: on 3rd Oct 2018 at Indian Energy Exchange

Source: NLDC, IEX, IEEFA.

Evening Peak load demand: appropriate wind power could be right solution

SECI RTC Tender 5000MW Generation requirement

Illustration: Monthly generation data

Declared availability in each time block									
Time Block	Duration (hrs)	RE (MW)	Thermal (MW)	Total (MW)	Offered MWh (RE)	Offered MWh (Thermal)	RE %	Availability	
T1	60	250	200	450	15000	12000	55.6%	90%	
T2	60	300	200	500	18000	12000	60.0%	100%	
Т3	60	350	50	400	21000	3000	87.5%	80%	
T4	60	50	140	190	3000	8400	26.3%	38%	
T5	60	50	200	250	3000	12000	20.0%	50%	
Т6	60	50	100	150	3000	6000	33.3%	30%	
Τ7	60	200	200	400	12000	12000	50.0%	80%	
T8 (Peak hours)	60	150	200	350	9000	12000	42.9%	70%	
T9 (Peak hours)	60	100	200	300	6000	12000	33.3%	60%	
T10	60	50	200	250	3000	12000	20.0%	50%	
T11	60	150	200	350	9000	12000	42.9%	70%	
T12	60	100	200	300	6000	12000	33.3%	60%	
Total		1800	2090	3890	108000	125400			
Total MWh offered					233400				
Average (=Monthly availability)							40.87%	64.83%	

Round-The-Clock (RTC) power

penalty for shortfall in availability, Excess/shortfall Generation

- In case the project availability is less than 85% on annual basis, or during the peak hours, for reasons attributable to RTC Power Generator, the Generator shall be liable to pay to the Procurer, penalty for such shortfall in availability.
- The amount of such penalty will be 400% of the cost of this shortfall in energy terms, calculated at the applicable tariff payable during the year.
- In a particular contract year, in case of shortfall in annual availability below 85%, shortfall in annual availability of peak hour below 85%, shortfall in offering RE power below 51%, the maximum of the three would be applicable (amendment -02)
 - In order to allow optimization of operation of RE and Non RE Power Generating Systems, the Generator is allowed to supply power from the Non RE power plant in excess of contracted capacity, to any third party or power exchange without requiring any No-Objection Certificate from the Procurer.
 - The Generator may also sell the power which was offered to procurer (within Contracted Capacity) but not scheduled by Procurer, to any third party or power exchange without requiring NOC from the Procurer on day ahead basis
 - the Generator shall also be liable for penalty for any shortfall in offering energy from RE Sources out of total energy in a contract year below the proportion of energy from RE sources, quoted at the time of bidding, for reasons solely attributable to Generator.
 - The penalty corresponding to this shortfall in RE power shall be calculated at 400% of applicable tariff payable during the year for each unit of shortfall

Hybrid Project Configuration, India

Hybrid Project Configuration, India

Hybrid Power Project, India

SUZLON TECHNOLOGY

Hybrid Power Project

Excess/Shortfall in Generation

- In case of availability of energy more than the maximum annual CUF specified, Generator will be free to sell it to any other entity provided first right of refusal will vest with the Procurer
- In case the Procurer purchases the excess generation, the same may be done at 75% of the PPA tariff (specified in Amendment 05)
- Procurer only obliged to buy power within specified CUF in the PPA

Penalty for shortfall in availability

In case the project supplies energy less than the energy corresponding to the minimum CUF, compensation for the shortfall in energy terms will be calculated @ 50% of the PPA tariff

Evolution of Grid Code & Standards to address large RE Energy Integration challenges

Capabilities requested to provide ancillary services at par or better than traditional generators, technical requirement trend in direction of replacing traditional generators

... To support higher RE integration challenges and meet Government targets

POWERING A GREENER TOMORROW

Low Voltage Ride Through (Wind, Solar, Storage,

Hybrid) Key requirement with varied performance

- LVRT Testing of wind farm at point of connection not possible
- Prove compliance with real fault

Performance during Fault Ride Through

Controlled and co-ordinated magnitude of reactive current injection/absorption

To support grid voltage stability and frequency stability

- state of art Wind, Solar and storage converters capable to meet these requirements
- We should define how Wind and Solar generators should behave considering local grid protection and operation philosophy and not according to certification agencies/other grid codes like Entsoe

South Australia Grid Collapse: an example

Six voltage drops in 88 seconds on transmission system

28th Sept 2016:

- Lightning, wind speed forcasted upto 120km/h,
- prefault load of 1895MW
- 850,000 electricity customers
 - Interuption for 65 minutes
 - Instantaneous loss of 900 MW due to LVRT protections systems in wind farms

- Plant shall be designed considering Extreme weather conditions like in S.Australia that happended once in 50 years
- Grid interfacing converters in Wind and Solar plants sensiotive to disturbances
- Challenge in ensuring power system stability under such events when RE become major source......

No mention of such requireemnts in grid codes or IEC/IEEE standards

LVRT test facility

Suzlon mobile LVRT/HVRT Laboratory at site in India

Wind turbines extensively tested at 33KV voltage level with direct connection to grid

Testing needs to consider wind season (once in a year, 3-4 months duration, few weeks of rated wind), testing as per IEC standard 61400-21-1 Not possible to test the entire park at POI/PCC

High Voltage Ride Through (wind, solar, storage)

HVRT at park level (point of common coupling)

• Testing of wind farm/RE parks at point of connection not possible

- Prove compliance with real fault at park level....long wait for event and then approval process
- Acurate model and simulations using state or art software

POWERING A GREENER TOMORROW

Performance during Fault Ride Through

Controlled and co-ordinated magnitude of reactive current injection/absorption

To support grid voltage stability and frequency stability

- state of art Wind, Solar and storage converters capable to meet these requirements
- We should define how Wind and Solar generators should behave considering local grid protection and operation philosophy and not according to certification agencies/other grid codes like Entsoe

25 Copyright © 2018 Suzlon Energy Limited | All rights reserved.

Reactive power capability requirement

- Reactive capability of wind and solar plants is available 24X7, could be utilised to regulate grid voltage, improve voltage regulation and stability with proper co-ordination
- RE plants provide very fast response (<20ms), accurate control, low loss</p>

26

2

Grid Frequency Regulation

Worldwide Overview, Frequency response critical to ensure reliable power system operation

Country	Applicability	Droop range	capability	Market driven
ENTSO-E, Europe (36 countries, 46 TSO)	yes	2-12%	yes	Yes, vary country to country, under adoption phase
ERCOT, USA	yes	5%	YES (reserve headroom)	YES
Ontario IESO	yes	2-7%	Yes, additional synthetic inertia	
PJM	yes	5%	yes	
California ISO	yes	5%		yes
National Grid, UK	Yes, conditional	3-5%	Yes, enhanced frequency response	Yes, procured from batteries
AEMO, Australia	yes		yes	yes
Spain	yes	1.5%	yes	yes
Brazil	yes	2-8%	yes	
Singapore	yes	3-5%	yes	yes
Switzerland	yes	2-12%	yes	yes
India	yes	3-6%	yes	in discussion

Frequency response and regulation requirements included in grid codes of most countries with different performance parameters with separate commercial settlement mechanism

Due to the differences in the composition of the power generation mix, load characteristics, evolution of power grid, and other specific circumstances, there would not be identical grid codes.

Countries with less experience in wind & solar technology would adopt technical requirements from other advanced grid codes

Technical performance expected from RE parks.. in near future...

SYNTHETIC INERTIA

FAST FREQUENCY REGULATION

ACCURATE GENERATION FORECAST

POWER QUALITY (Harmonics, flicker)

VOLTAGE & FREQUENCY RIDE THROUGH

POWER OSCILLATION DAMPING

Unbalance low/high voltage ride through capability

Reactive Power/Voltage Support during no wind

Wind independent power ramp up/down

BLACK START

Expected performance

SECURITY, RELIABILITY, STABILITY and QUALITY of POWER Supply from RE parks same or better than traditional power plants

Current trends = future mandatory technical requirements

Failure to remain compliant with grid code could lead disconnection of RE parks from grid, causing huge revenue loss to generation companies

Example: Technical standards for connectivity to Grid (CEA 2019, India)

Major requirements: Wind park, solar Park, Hybrid Park

3. High Voltage Ride Through

(voltage up to 130% for 0.2 sec)

- Compliance at Park level
- 4. Low Voltage Ride Through
- (Active power recovery in 1 sec)
- Compliance at Park level

- Provided that for large frequency deviation e.g. in excess of 0.3 Hz, the Wind and Solar Generating Station shall have the facility to provide an immediate (within 1 second) real power primary frequency response of at least 10% of the maximum AC active power capacity
- The operating range of the frequency response and regulation system shall be from 10% to 100% of the maximum AC active power capacity, corresponding to solar insolation/wind speed
- Governors/frequency controllers of the units (WTG) shall have a droop of 3 to 6% and a dead band not exceeding ±0.03 Hz

Challenging technical requirements, require innovative solutions

References

More amendments expected in RfS of RTC 5000MW before bidding

- 1. Flexing India's Energy System Making the Case for the Right Price Signals Through Time-Of-Day Pricing, 8 Jan 2019, IEEFA, India
- 2. Report on optimal generation capacity mix for 2029-30 by Ministry of Power & CEA, Jan 2020
- 3. Amendments to the Guidelines for Tariff Based Competitive Bidding Process for Procurement of Round-The Clock Power from Grid Connected Renewable Energy Power Projects, complemented with Power from Coal Based Thermal Power Projects, 3rd November 2020
- 4. Guidelines for Tariff Based Competitive Bidding Process for Procurement of Round-The Clock Power from Grid Connected Renewable Energy Power Projects, complemented with Power from Coal Based Thermal Power Projects, 22 July 2020

Amendment-01 to RfS for Selection of RE Power Developers for Supply of 5000 MW of Round-the-Clock (RTC) Power from Grid-Connected Renewable Energy (RE) Power Projects, complemented with Power from Coal based Thermal Power Projects in India under Tariff-based Competitive Bidding (RTC-II)

Amendment-02 to RfS for Selection of RE Power Developers for Supply of 5000 MW of Round-the-Clock (RTC) Power from Grid-Connected Renewable Energy (RE) Power Projects, complemented with Power from Coal based Thermal Power Projects in India under Tariff-based Competitive Bidding (RTC-II)

Clarifications to queries on the RfS for Selection of RE Power Developers for Supply of 5000 MW of Round-the-Clock (RTC) Power from Grid-Connected Renewable Energy (RE) Power Projects, complemented with Power from Coal based Thermal Power Projects in India under Tariff-based Competitive Bidding (RTC-II) (RfS No. SECI/C&P/RPD/RTC-II/RfS/5000MW/032020)

References

- Guidelines for Tariff Based Competitive Bidding Process for procurement of power from Grid Connected Wind Solar Hybrid Projects, 14 Oct 2020
- REQUEST FOR SELECTION (RfS) DOCUMENT FOR SETTING UP OF 1200 MW ISTS-CONNECTED WIND-SOLAR HYBRID POWER PROJECTS (TRANCHE-III), RfS No SECI/C&P/HPD/T3/1200MW/RfS/012020, 14.01.2020
- Amendment-08 to the RfS for 1200 MW ISTS Connected Wind-Solar Hybrid Power Projects (Tranche-III), 28.11.20 (related to change in law clause)
- Amendment-07 to the RfS for 1200 MW ISTS-Connected Wind-Solar Hybrid Power Projects (Tranche-III), 25.11.20 (related to change in law clause)
- Amendment-06 to the RfS for 1200 MW ISTS-Connected Wind-Solar Hybrid Power Projects (Tranche-III), 19.11.20 ((related to bank guarantee)
- Amendment-05 to the RfS for 1200 MW ISTS Connected Wind-Solar Hybrid Power Projects (Tranche-III), 27.10.20
- Amendment-04 to the RfS for 1200 MW ISTS Connected Wind-Solar Hybrid Power Projects (Tranche-III), 26.06.20
- Amendment-03 to the RfS for 1200 MW ISTS-Connected Wind-Solar Hybrid Power Projects (Tranche-III), 24.04.2020
- Amendment-02 to the RfS for 1200 MW ISTS Connected Wind-Solar Hybrid Power Projects (Tranche-III), 19.03.2020
- Amendment-01 to the RfS for 1200 MW ISTS-Connected Wind-Solar Hybrid Power Projects (Tranche-III), 25.02.2020
- Clarifications-02 to the RfS for 1200 MW ISTS-Connected Wind-Solar Hybrid Power Projects (Tranche-III), 06.11.20
- Clarifications to the queries on the RfS , 25.02.2020
- Draft IEGC 2020
- Grid codes of India, South Afrika, Australia, Europe, ENTSO-E, USA, UK, and other countries

Thank you

for your attention

POWERING A GREENER TOMC

