WHEN TRUST MATTERS

June 16 *WinGrid Workshop Power System Balancing and Operation with Large Shares of Wind Power*

Wouter de Boer, Maurin Hörler woensdag 16 juni 2021

DNV

Contents

- What is Kermit?
- Questions which can be addressed with Kermit
- Power Balancing; Frequency containment and frequency restoration response
- Challenges with large amount of renewable generation. An example: Ireland
- Impression projects
- Demo of Kermit in the Smart4Res project, Maurin Hörler
- Questions?

What is Kermit?

What is KERMIT?

• An in-house tool developed by DNV in Europe and US

Simulates real-time power system dynamics

- Dynamics of conventional power plants
- Frequency response AGC control
- Time varying generation (e.g. wind farms) and loads
- Bulk power interconnection dynamics

• Core functionality: To Quantify the impact of variable power sources on system operation, e.g.

- Effect of adding wind or solar to the generation mix
- Effect of events like unit trips
- Impact of forecasting errors

KERMIT – what it does and who uses it

- Simulates the dynamics of power system at an intra-hour timeframe
- Can be used in combination with economic dispatch programs like PLEXOS
- KERMIT allows grid operators to evaluate risk of reliability events and test grid control strategies with high renewables or under new market scheme

DNV

KERMIT bridges gap between market and power system models

• KERMIT can be combined with several tools for a broader perspective, spanning portfolio planning to system stability

DNV © WOENSDAG 16 JUNI 2021

DNV

KERMIT fundamentals

- KERMIT is based upon equations in KUNDUR, Power System Stability and Control (1994), section 11.1 Active Power and Frequency Control
- · Generator models IEEE models and simplified models

11.1.1 Fundamentals of Speed Governing

The basic concepts of speed governing are best il isolated generating unit supplying a local load as shown

Source: Kundur, Power System Stability and Control. McGraw-Hill, inc. 1994.

Power excange between clusters wih the **Swing equation**

 $\delta = \int 2\pi \Delta f \, dt$

Control actions

- Control actions:
 - Inertia
 - Self-regulating load
 - Primary Control / Frequency Containment Reserve (FCR);
 - can be composed by a number of mitigating measures
 - Secondary Control / Frequency Restoration Reserve (FRR) / Automatic Generation Control (AGC)

KERMIT implementation in MATLAB/Simulink

- Excel file for input data
- Simulink GUI running MATLAB code
- Model is scalable and fast
- Typical simulation span: midnight to midnight

Questions which can be addressed with Kermit

Questions that KERMIT can address

- What is the **impact of increasing renewables** on grid balancing and frequency control in your system?
- Can the grid handle increased ramping from HVDC interconnections, renewables or changing market dynamics?
- Is the current market design capturing the full potential of fast regulation resources such as batteries?
- Will a **new technology** perform properly when integrated into a grid?

Figure 14: Trip event with increasing combustion engine penetration, high wind, first 50 seconds.

11 DNV © WOENSDAG 16 JUNI 2021

DNV

Points of attention further in this presentation

- ROCOF
- Nadir
- · The frequency containment and
- The frequency restoration response of power systems

Topics in the case of large amount of renewable generations and/or analysing new concepts

12 DNV © WOENSDAG 16 JUNI 2021

DNV

Power Balancing

Frequency containment and frequency restoration response of power systems

Frequency stability and power imbalance modelling

- Imbalance can be caused by:
 - Generator and/or network trips
 - Prediction errors for load and/or generation, especially renewable generation

Source: Frunt, 2011.

Frequency containment reserves, requirements and implementation

- ENTSO-E
 - A proportional control maintains the balance between generation and load
 - A 3000MW disturbance should lead to a quasi steady-state frequency deviation of 200mHz
 - The frequency must be stabilized within 30 seconds
- Implementation in NL until Jan 2014
 - All units with Pnom > 60MW \rightarrow 1% reserve
 - All units with 5MW < Pnom < 60MW \rightarrow 3% reserve
- Primary control market since Jan 2014 \rightarrow TSO single buyer market
 - Offfered bids completely activated at ${\rm \Delta}f$ +/- 200mHz

Trading platform for primary reserves (FCR) cross border used in Europe

Frequency **restoration** reserves, requirements and implementation

• ENTSO-E

- · Restore the power balance in each zone and restore the frequency
- PI-controller
- Restore the frequency within 15 minutes after a large disturbance

AGC mechanism

Other ACE requirements

• ENTSO-e is also having a measure to keep ACE within acceptable deviations, based on ACE statistics

Synchronous Area Fra Agreement (SA]

for

- Measure in which other issues can be judged:
 - Forecast errors of VRES
 - Amount of reserves
 - Other mitigating measures

LFC-Block	Belonging LFC-Area
OST	OST
APG	APG
SHB	NOS BIH, HOPS, ELES
Elia	Elia
ESO	ESO
SG	SG
CEPS	CEPS
TNG, TTG, AMP, 50HZT, EN, CREOS	TNG, TTG, AMP, 50HZT, EN, C
DEE	DEE

Challenges with large amount of renewable generation.

An example: Ireland

Challenges with large amount of renewable generation *Ireland*

- Ireland is having a relative small and sensitive grid
- Ireland is having in 2020 65% installed System Non-Synchronous Penetration (SNSP) and intends to grow to 95% SNSP in 2030
- Is having a structured way to implement and check described in →

System Services Future Arrangement Scoping Paper

Challenges with large amount of renewable generation *Ireland*

For 2020 they did design and implement the

Conceptual market org for the provision of ir system services: role associated market de regulatory frame

D3.2

Category	Scarcity	Potential System Services
Frequency Stability & Control	Insufficient contingency reserve	DS3 FFR, POR, SOR, TOR, RR
	Lack of inertia	DS3 SIR
Voltage Control	Lack of Steady state reactive power	DS3 SSRP
	Lack of dynamic reactive power	DS3 DRR, DS3 FPFAPR
	Lack of system	DS3 DRR
	strength	
Rotor angle	Lack of synchronising	DS3 DRR

Challenges with large amount of renewable generation *Ireland*

Technical topics summarised:

- Frequency Stability & Control
- Ramping
- Voltage Stability
- Rotor Angle Stability
- Congestion
- Adequacy

Role of Kermit can be:

Technical topics summarised:

- Frequency Stability & Control
- Ramping
- Voltage Stability
- Rotor Angle Stability
- Congestion
- Adequacy

Can be dealed with Kermit

Herefore you need detailed modeling e.g.→ Need of PSSE or Power Factory

Impression projects

Recent and ongoing projects

Recent and ongoing projects

EU Horizon 2020: Advanced integrated supervisory and wind turbine control for optimal operation of large Wind Power Plants

• Ancillary service adequacy: To show the potential role of wind farms in providing ancillary services and virtual inertia to the grid (*Publication WIW 2020*)

Colombian ISO: Integrating variable renewable energy technologies in the Colombian grid

• RES integration study: Insight in the feasibility of increasing the penetration of RES in the Colombian power system

Ukraine: Energy system storage (ESS) project

• Additional Flexibility Analysis with KERMIT (FCR from BESS and load shedding).

Smart4RES: Test and validation Project

- European collaborative R&D Project funded under the H2020 program
- Model validation

Kermit in Smart4Res project

System operator advisory system for evaluating synchroneous inertia adequacy; alternative option

Current main focus: Set up Kermit for Rhodos simulations

30

Demo of Kermit in the Smart4Res project

Maurin Hörler

Questions?

WHEN TRUST MATTERS

Thanks for attention!

Wouter de Boer, Maurin Hörler

Wouter.deboer@dnv.com Mobile +31 (0) 6 46 713 784

www.dnv.com

33 DNV © WOENSDAG 16 JUNI 2021

Maurin.hoerler@dnv.com Mobile +31 0625640244

