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Agenda

• What is VRE generation?
• And why should we simulate VRE time series?

• Developments in simulating VRE time series
• Use of reanalysis data
• How to achieve higher spatial and temporal resolution
• Including analysis of forecast errors

• Applications and recent projects
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What is VRE and why time 
series matter?
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What is VRE generation?

• Variable renewable energy (VRE)
1. It’s renewable
2. It’s variable due to being 

weather dependent

• Mainly wind and solar 
photovoltaic (PV) generation

• Also (but not considered in this 
presentation):

• Concentrated solar power 
(CSP)

• Run-of-river hydro power 
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Variability in wind speed translates to variability in generation
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Variability and forecast uncertainty 

• Variability
– inherent in weather-dependent 

generation 
– Affected by technology (e.g., 

power curve shape)
– Cannot be removed

• Forecast uncertainty
– Caused by forecast errors
– Can be reduced by more 

accurate forecasts Variation in available power is variability.
Difference between available power and HA forecast (or DA forecast) 
reflects forecast uncertainty.
DA = day-ahead; HA = hour-ahead
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Why do we care about VRE time series?

• Wind atlases:
– Mean wind speed
– Wind speed distribution
– Focus on annual energy 

generation

• However:
1. Electricity markets operate on 

hourly (or higher) resolution
2. The power system needs to be 

in balance at all times
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Wind resource map from Global Wind Atlas (https://globalwindatlas.info/)

https://globalwindatlas.info/
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LinkedIn post from Nord Pool AS, Nov 2020 (www.linkedin.com/company/nord-pool/) 

Impacts already seen on electricity prices:
Sometimes low (or even negative)

http://www.linkedin.com/company/nord-pool/
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https://www.current-news.co.uk/news/power-prices-spike-to-720-mwh-as-low-winds-continue-to-stretch-grid

Impacts already seen on electricity prices:
Sometimes very high

https://www.current-news.co.uk/news/power-prices-spike-to-720-mwh-as-low-winds-continue-to-stretch-grid
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https://www.egssis.com/its-time-to-become-a-balancing-service-provider/

Belgian imbalance 
prices reached a 
peak of 2291 €/MWh 
on Dec 2020

Impacts already seen on electricity prices:
Balancing market prices can also be high

https://www.egssis.com/its-time-to-become-a-balancing-service-provider/
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Why not just use historical VRE data?

• Measurements cover a limited time range
• May not include extreme cases (e.g., 

storms, low wind events)
• Measurements cover existing VRE fleet

• New installations may have different 
technology

• And different geographical distribution

• Simulations allow:
– Using tens of years of meteorological data
– Changing VRE technology
– Changing VRE installation locations
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Wind Europe “Our energy, our future“, 2019, 
https://windeurope.org/about-wind/reports/our-energy-our-future/

https://windeurope.org/about-wind/reports/our-energy-our-future/
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Developments in simulating 
VRE time series
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CorRES:
Correlations in Renewable Energy Sources

• Time series simulation tool for variable renewable energy (VRE) generation:
1. VRE variability
2. VRE forecast uncertainty

• Globally via ERA5 reanalysis and Global Wind Atlas microscale data
• Developed at DTU Wind Energy

12
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Meteorological 
data

• ERA5

• ERA5-Land
• Global Wind Atlas

Conversion to 
power generation

• Wakes using PyWake

• Storm shutdown 
model

• PVLib for solar PV

• Turbine data
• Wind power plant 

(WPP) data

CorRES:
The two key parts of the model chain

VRE time
series
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• Reanalysis datasets use low-
resolution terrain and land-use 
data
– ERA5 output on 30 km 

resolution

• Global Wind Atlas (GWA):
– Microscale modelling using 

WAsP
– Up to 250 m resolution

• CorRES applies scaling to 
match the GWA mean wind 
speeds1
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1M. Koivisto, et al., “Application of microscale wind and detailed wind power plant data in large-scale wind generation simulations”, Electric Power Systems Research, 2021

CorRES:
Reanalysis time series + Global Wind Atlas

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5
https://globalwindatlas.info/
https://doi.org/10.1016/j.epsr.2020.106638
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• Wakes
• Using PyWake1

• Also farm-to-farm wakes1

• Machine learning (ML) used to 
handle thousands of WPPs 

• Storm shutdown
• Plant-level model based on 

turbine-level specs1

• Turbine database
• Hundreds of turbine types

• WPP database
• Thousands of WPPs

15

CorRES:
Wind conversion to power generation

1J. P. Murcia Leon et al., “Power Fluctuations In High Installation Density Offshore Wind Fleets”, Wind Energy Science, 2021

https://doi.org/10.5194/wes-2020-95
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• Weather data
• ERA5-Land for global irradiance
• 9 km resolution, hourly
• PVLib is used to get from global irradiance data to direct and diffuse components

• Conversion to power generation
• Using PVLIb
• Generic solar PV & inverter model

PVLib: https://pvlib-python.readthedocs.io/en/latest/

CorRES:
Includes also solar PV variability model chain

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview
https://pvlib-python.readthedocs.io/en/latest/
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Validation

17
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CorRES validation:
DK onshore wind
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• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Paper in review

https://open-power-system-data.org/


DTU Wind Energy16 June 2021 VRE simulation

CorRES validation:
SE onshore wind
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• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Paper in review

https://open-power-system-data.org/
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CorRES validation:
FR onshore wind

20

• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Note: Uncertainty in the historical French onshore wind 
capacity factor (CF), as differences between sources:
0.20 (ENTSO-E annual generation & installed capacity)
0.23 (IRENA annual generation & installed capacity)

Paper in review

https://open-power-system-data.org/
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CorRES validation:
DE onshore wind
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• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Paper in review

https://open-power-system-data.org/
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CorRES validation:
PL onshore wind
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• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Paper in review

https://open-power-system-data.org/
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CorRES validation:
NO onshore wind
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• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Paper in review

https://open-power-system-data.org/


DTU Wind Energy16 June 2021 VRE simulation

CorRES validation:
NL offshore wind
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• Measured generation data
• https://open-power-system-

data.org/
• Based on ENTSO-E 

Transparency Platform
• Installed capacity data

• IRENA

Paper in review

https://open-power-system-data.org/
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Sub-hourly data and forecast errors:
Via stochastic simulation
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• The reanalysis wind speeds do not include all 
high frequency information

• Caused by smoothening effects in the 
models 

• The resulting power time series do not model 
ramp rates accurately

• Stochastic simulation is used to add the missing 
variability to the reanalysis data in CorRES

• Allows sub-hourly simulation resolution
• Currently available for wind
• In development for solar

M. Koivisto et al., “Combination of meteorological reanalysis data and stochastic simulation for modelling wind generation variability”, Renewable Energy, 2020 

CorRES:
Sub-hourly fluctuations

https://doi.org/10.1016/j.renene.2020.06.033
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CorRES:
Sub-hourly fluctuations
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• Stochastic fluctuation model
• Stochastic model (like the turbulence models) captures autocorrelations at each plant
• And cross-correlations between fluctuations in multiple locations
• Gaussian or t-student distributed fluctuations

J. P. Murcia Leon et al., “Power Fluctuations In High Installation Density Offshore Wind Fleets”, Wind Energy Science, 2021 

https://doi.org/10.5194/wes-2020-95
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• Simulation of VRE forecast errors
• For analysing forecast errors in the long 

term (expected behaviour)
• Not for forecasting tomorrow
• Based on stochastic time series 

simulation

• For wind and solar PV generation
• For different forecast horizons

• E.g., day-ahead, hour-ahead
• Example applications:

• Estimating balancing costs
• System balancing needs

28
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Day-ahead, hour-ahead and available power

E. Nuño et al, “On the simulation of aggregated solar PV forecast errors”, IEEE Transactions on Sustainable Energy, 2018 

CorRES:
Modelling VRE forecast uncertainty

https://doi.org/10.1109/TSTE.2018.2818727


DTU Wind Energy16 June 2021 VRE simulation

Applications and recent projects

29
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Energy system investment studies

30

• For example for studying:
• Offshore energy hubs & meshed grids
• Impact of sector coupling

J. Gea-Bermúdez et al., “Optimal generation and transmission development of the North Sea region: impact of grid architecture and planning horizon”, Energy, 2020 (https://doi.org/10.1016/j.energy.2019.116512)

M. Koivisto et al., “North Sea region energy system towards 2050: integrated offshore grid and sector coupling drive offshore wind installations”, Wind Energy Science, 2020 (https://doi.org/10.5194/wes-2020-60).

BalmorelCorRES Scenarios

https://doi.org/10.1016/j.energy.2019.116512
https://doi.org/10.5194/wes-2020-60
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M. Koivisto et al., “North Sea offshore Grid development: Combined optimization of grid and generation investments towards 2050”, IET Renewable Power 
Generation, vol. 14, no. 8, pp. 1259-1267, June 2020 (https://doi.org/10.1049/iet-rpg.2019.0693)
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VRE type Starting point
[GW] 2030 [GW] 2050 [GW]

Offshore wind 22 64 92

Onshore wind 76 106 114

Solar PV 70 126 182

Generation
share Starting point 2030 2050

VRE 28% 55% 70%

Renewable 46% 75% 88%

Is a meshed offshore grid beneficial?
Baseline: No North Sea offshore grid
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https://doi.org/10.1049/iet-rpg.2019.0693
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Is a meshed offshore grid beneficial? 
Offshore grid is built in the optimised system
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VRE type Starting point
[GW] 2030 [GW] 2050 [GW]

Offshore wind 22 69
(30%)

102
(39%)

Onshore wind 76 101 106

Solar PV 70 120 176

Generation
share Starting point 2030 2050

VRE 28% 56% 72%

Renewable 46% 76% 89%

Percentages show hub-connected offshore wind shares

M. Koivisto et al., “North Sea offshore Grid development: Combined optimization of grid and generation investments towards 2050”, IET Renewable Power 
Generation, vol. 14, no. 8, pp. 1259-1267, June 2020 (https://doi.org/10.1049/iet-rpg.2019.0693)
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https://doi.org/10.1049/iet-rpg.2019.0693
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Sector coupling impacts
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• A change of paradigm takes place due to sector 
coupling:

• The system moves from generation adapting to 
demand, to demand adapting to generation

• The installed electricity capacity by 2050 roughly 
triples compared to 2025

• When power-to-heat (P2H) investments and 
transport demand (also hydrogen) are 
considered

• P2H is the preferred option to decarbonize the heat 
sector

• P2H provides flexibility to the system

J. Gea-Bermúdez, et al., “The role of sector coupling in the green transition: A least-cost energy system development in Northern-central Europe towards 2050”, Applied Energy, 2021

2045

https://doi.org/10.1016/j.apenergy.2021.116685
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Sector coupling drives the development of 
offshore meshed gird

34

J. Gea-Bermúdez et al., “The value of sector coupling for the development of offshore power grids”, Pre-print, TechRxiv, 2021

• The higher the level of sector coupling, the 
higher the value of offshore grids

https://dx.doi.org/10.36227/techrxiv.13643015.v1
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• On top of Balmorel 
investment runs

• Or other scenarios

• Unit commitment and 
dispatch (spot market)

• Society cost of energy

• Balancing volume and 
costs (balancing model)

• Real time imbalance
• Frequency quality

35

Dispatch
cost of energy 
CO2 emission 

spot prices

Up regulation
down regulation 
balancing cost

Real time imbalance
FRR & FCR activation 

frequency quality 

Balancing Tool Chain
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VRE simulations for ENTSO-E

• Pan-European climate database (PECD):
• Database of weather driven time series
• DTU Wind Energy does wind & solar
• Hourly resolution, 35+ years

• DTU Wind Energy and ENTSO-E entered 
into a Long-term Cooperation Agreement 
for 2018-2023

• Update of PECD data in Spring 2021
• Including large range of wind 

technologies for scenario building 
needs

36

Web based access in development
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4.4 GW offshore wind integration study for Elia:
Impacts on power systems

• 4.4 GW offshore wind integration study for 
the Belgian TSO Elia

• Very dense offshore wind installations
• Wake modelling important
• Including farm-to-farm wakes
• Multiple plants may experience 

simultaneous storm shutdown

• Impacts on:
• Ramp rates
• Fleet-level storm shutdowns
• Expected forecast errors

37

2020
2026

BE
NL

DTU Wind Energy, “Report for Elia: MOG II System Integration: Public version”, 2020 (https://orbit.dtu.dk/en/publications/elia-mog-ii-system-integration-public-version).

https://orbit.dtu.dk/en/publications/elia-mog-ii-system-integration-public-version
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Impact of different storm shutdown technologies in an example storm case.
Significant difference on how quick power ramps down

4.4 GW offshore wind integration study for Elia:
Impacts of storm shutdown technology

DTU Wind Energy, “Report for Elia: MOG II System Integration: Public version”, 2020 (https://orbit.dtu.dk/en/publications/elia-mog-ii-system-integration-public-version).

https://orbit.dtu.dk/en/publications/elia-mog-ii-system-integration-public-version
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Modelling offshore wind in North Sea energy hubs

• Contracted research by the North Sea Wind 
Power Hub (NSWPH)

• NSWPH is a consortium of Energinet, 
Gasunie and TenneT

• https://northseawindpowerhub.eu/

• DTU Wind Energy supports the study of 
offshore energy hubs and their energy 
system impacts

• https://northseawindpowerhub.eu/nspwh-
contracts-research-partners-for-
extensive-energy-system-study/

• Simulation of all VRE time series

39

Figure from: https://northseawindpowerhub.eu/wp-
content/uploads/2019/11/NSWPH-Drieluik-Herdruk_v01.pdf

https://northseawindpowerhub.eu/nspwh-contracts-research-partners-for-extensive-energy-system-study/
https://northseawindpowerhub.eu/wp-content/uploads/2019/11/NSWPH-Drieluik-Herdruk_v01.pdf
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Other
• NSON-DK: Impacts of offshore wind on the Danish system
• OffshoreWake: Farm-to-farm wakes
• PSfuture: Future systems & climate change
• BaltHub: Offshore energy hubs & P2X in the Baltic Sea

• Funding for the different projects presented in this 
presentation:

• La Cour Fellowship, DTU Wind Energy
• EUDP, Danish Energy Agency
• Nordic Energy Research
• Commissioned works for ENTSO-E and Elia

40

https://www.nson-dk-project.dk/
https://www.offshorewake.dk/about-the-project
https://orbit.dtu.dk/en/projects/power-system-impacts-of-highly-weather-dependent-future-energy-sy
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