POWER SYSTEM BALANCING WITH WIND POWER

Balancing at Energinet

Bent Myllerup – Senior Director of Controlcenter at Energinet

ELECTRICITY GRID

POWER	Transmission g	rid	
400 kV AC	Substation	— Overhead line	 Cable
400 kV DC	Converter station	Overhead line	 Cable
220 kV AC	Substation	— Overhead line	 Cable
132/150 kV AC	 Substation 	— Overhead line	 Cable
💧 Offshore w	ind farm (owned by o	ther companies)	
Last update	e: beginning of 2013		

PARALLEL DEVELOPMENTS

- TOWARDS RENEWABLE ENERGY AND OPEN MARKETS

THE CHANGES OF THE POWER SYSTEM

SOLAR AND WIND POWER IS SHARED ACROSS BORDERS

We cannot simply dial output up and down

Wind and solar power (fluctuating generation)

Power stations (dispatchable generation)

A much greater share of future electricity generation is expected to come from wind and solar power rather than from CHP plants.

CONSUMPTION AND GENERATION ARE OUT OF STEP

FLEXIBILITY IN THE ELECTRICITY SYSTEM

Wind turbines
 Local plants
 Primary plants
 Import

FORECAST

8

WIND POWER FORECAST

We use two forecasting tools – one external and one internal.

External forecast

- Online forecast (0-12 hours) every 15 minutes
- Day ahead forecast (0-48 hours) every hour

Internal forecast

- Online forecast (0-10 hours) every 5 minutes
- Day ahead forecast (0-192 hours), triggered by new weather prognosis

Each forecast is based on weather prognoses from three providers

INTERNAL FORECAST

DISTRIBUTED GENERATION MANAGEMENT SYSTEM

- 6300 generators on 4600 'plants'
- 18 Balance Responsible Parties for Production (PBR)
- 75 plants with individual schedules and 4525 plants without!

Data management for

- Generation forecast
- Load flow analysis

CHALLENGES

 Having 4,9GW wind power installed in the system, a change of 1 m/s in wind speed can result in a change of
 > 650 MW generation

 The meteorological forecasts rarely agree on the same wind speed.

OPERATIONAL PLANNING TOOL - CONTINOUSLY UPDATED SCHEDULES AND FORECASTS

POWER MARKET

14

THE DAILY POWER MARKETS

BALANCING

BALANCE

BALANCING

Balance = Demand + Wind Power + CHP + Conventional Power + Exchange,

- Demand is negative
- Production is positive
- Exchange is calculated with sign
 - import is positive
 - export is negative

Demand, On-shore Wind Power and a part of CHP is based on predictions. The rest: CHP, Off-shore wind power, Conventional power and exchange is scheduled by the market players. The schedules are updated if they deviate more than 10 MW.

The goal for balance is ~ 0

BALANCING MARKET OPERATION

60 minutes before operational hour: Market is closed, and Energinet.dk takes over the balancing

BALANCING THE SYSTEM

- DK east is balanced together with the Scandinavian system and is controlled by frequency.
 - It is balanced from Sweden or Norway altering on regular basis
 - DK west is balanced by ENDK and is ACE controlled
 - We want to know the balance in advance to be able to control the system in the most effective way.
 - Gives us an opportunity to manage the system balancing proactively and cost-efficiently.
 - We can use slow and cheap regulation.
 - With an increasing amount of wind power we need all possible regulating reserves in the system.
 - Detailed knowledge of production, consumption and exchange provides the basis for good grid security calculations which allow us to operate the grid closer to the limit.
 - Wind is treated as all other production (schedules, regulating market, online measures etc.)
 - PV is predicted from metrological forecast, and "online measurement" unscaled from measures collected by the manufactures of PVs and forwarded to END

Balancing the electricity system DK1

OPERATIONAL PLANNING – BALANCE MANAGEMENT

- Around 80 new balance schedules a day
- Production responsible market players must update and submit new production schedules equal to expected operation of the power plants
- All schedules, exchange, power plant production schedules, consumption forecasts and wind forecasts are 5 min. resolute power schedules
- The balance schedule is used to trade the imbalance in the common Nordic regulating power market (manual reserve).

BALANCE MANAGEMENT – THE PUZZLE

Balance

COMMON NORDIC BID LIST.

	Ti	Ear Mark	Price / EUR	Price / DKK	Amount 7 MW	ELSPOT area	Bid type	Activation time	Balance	Special	Bid unavailable	Power Plant	Duration time	Resting time	Us
			50,53	377	38	SE	CIAL	10				Klarälven	0	0	Hydr
			49,98	373	10	SE	CIAL	10				Byälven	0	0	Hydr
			49,90	372	16	SE	CIAL	10				Letsi	0	0	Hydr
			49,83	372	40	NO4	CIAL	15				Siso	0	0	Hydr
			49,55	369	73	SE	CIAL	10	++++			Trängslet BKB	0	0	Hydr
			49,19	367	75	N02	CIAL	15	+++++++			Rjukanverkene	120	240	Hydr
			49,01	365	77	SE	CIAL	10	+++++++++++++++++++++++++++++++++++++++			Ljusnan Övre	0	0	Hydr
			49,00	365	20	FI	CIAL	15	+++++++++++++++++++++++++++++++++++++++				60	10	Hydr
			48,90	365	40	SE	CIAL	3	+++++++++++++++++++++++++++++++++++++++			Blåsjön	0	0	Hydr
			47,90	357	12	SE	CIAL	10	+++++++++++++++++++++++++++++++++++++++			Letsi	0	0	Hydr
			47,81	356	60	SE	CIAL	3	+++++++++++++++++++++++++++++++++++++++			Blåsjön	0	0	Hydr
			47,28	353	25	N05	CIAL	15				ВКК	0	0	Hydr
			47,28	353	58	N02	CIAL	15	+++++++++++++++++++++++++++++++++++++++			Brokke	0	0	Hydr
			46,00	343	10	N05	CIAL	15				Svelgen	1440	0	Hydr
			45,64	340	10	SE	CIAL	5	+++++++++++++++++++++++++++++++++++++++			Faxälven Nedre	0	0	Hydr
			44,72	333	30	N05	CIAL	15				Naddvik	0	0	Hydr
			44,41	331	14	DK1	CIAL	15	+++++++++++++++++++++++++++++++++++++++			DONGP-W	1	1	Ther
			44,40	331	10	SE	CIAL	10	+++++++++++++++++++++++++++++++++++++++			Nedre ume älv	0	0	Hydr
			44,27	330	22	DK1	CIAL	15	+++++++++++++++++++++++++++++++++++++++			DONGP-W	1	1	Ther
			44,14	329	14	DK1	CIAL	15	+++++++++++++++++++++++++++++++++++++++			DONGP-W	1	1	Ther
			44,00	328	25	DK1	CIAL	15	+++++++++++++++++++++++++++++++++++++++			DONGP-W	1	1	Ther
			43,87	327	14	DK1	CIAL	15	+++++++++++++++++++++++++++++++++++++++			DONGP-W	1	1	Ther
Up			43.87	327	11	DK1	CIAL	15	+++++++++++++++++++++++++++++++++++++++			DONGP-W	1	1	Ther
Down			43,40	324	-10	SE	CIAL	10				Nedre ume älv	0	0	Hydr
			42,90	320	-181	SE	CIAL	10				Seitevare	0	0	Hydr
			42,38	316	-10	SE	CIAL	5				Faxälven Övre	0	0	Hydr
			41,29	308	-95	SE	CIAL	10				Trängslet BKB	0	0	Hydr
			40,30	300	-20	DK1	CIAL	15				VFDK-W	1	1	Ther
			40,20	300	-10	SE	CIAL	5				Faxälven Nedre	0	0	Hydr
			40,00	298	-10	FI	CIAL	15				1	60	10	Hydr
			39,30	293	-25	DK1	CIAL	15				DONGP-W	1	1	Ther
			38,89	290	-25	DK1	CIAL	15				DONGP-W	1	1	Ther
			37,90	283	-20	DK1	CIAL	15		Special		VFDK-W	1	1	Ther
			37,42	279	-25	DK1	CIAL	15				DONGP-W	1	1	Ther
			37,28	278	-25	DK1	CIAL	15				DONGP-W	1	1	Ther
			37,10	277	-20	DK1	CIAL	15			<u> </u>	VFDK-W	1	1	Ther
			36,30	271	-20	DK1	CIAL	15				VFDK-W	1	1	Ther 🔽
<															>

Transmission to neighboring countries and offshore wind farms

THE ENERGY SYSTEM OF THE FUTURE

28

BALANCING THE DANISH POWER SYSTEM

THANK YOU FOR YOUR ATTENTION

