

Prof. Poul Sørensen, convener of IEC 61400-27

Standards for modelling of wind in power system studies

Outline

- Introduction
 - Power system stability definition
 - Types of models used in power system studies
 - Why generic models
 - Standards and best practices (-27, WECC, CIM, -21-3, CIGRE)
- Generic fundamental frequency (RMS) models
 - IEC 61400-27-1
 - WECC
- Validation of fundamental frequency (RMS) models
 - IEC 61400-27-2

Introduction

- Power system stability definition
- Types of models used in power system stability studies
- Why generic models
- Standards and best practices (-27, WECC, CIM, -21-3, CIGRE)

Power system stability definition(s)

Source:

Stability definitions and characterization of dynamic behavior in systems with high penetration of power electronic interfaced technologies IEEE Power & Energy Society TECHNICAL REPORT PES-TR77 April 2020

Types of models used in power system stability studies

- CENELEC CLC/TS 50654-1:2018 distinguishes between the following 7 types of models:
 - 1. Load flow models
 - 2. Short-circuit models
 - 3. Protection system models
 - 4. Insulation coordination related models
 - 5. Electromechanical transient models
 - 6. Electromagnetic transient models
 - 7. Power quality models

- TSO & developer questionnaire in EU PROMOTioN project found that this subdivision of models does not exactly reflect used types of models
- One reply specified :
 - Load flow models
 - Short-circuit and protection system models
 - Electromechanical transient models (often denoted RMS models or fundamental frequency models)
 - EMT models both for EMT studies and insulation coordination studies
 - Models for harmonic / power quality studies

Why generic models?

- Different grid operators use different software
- In order to connect to a system operator grid, plant vendors need to supply models in the software used by that system operator
- This model development and model validation requires extensive work from plant vendors
- Interconnected grid operators also have difficulties exchanging models if they use different software

Why generic models?

- Advantages of standard generic models:
 - Less implementation and validation work
 - Software vendors implement models
 - Eases model exchange
- Challenges:
 - Different vendor hardware and control
 - Competitive advantages of leading plant vendors

Fundamental frequency models

Generic models: WECC and IEC

Model validation: German and IEC

Category

Date

Stored/filed

Previous name/number Status

Best practices for multifrequency (harmonics) modelling

- IEC 61400-21-3 (2019)
 - Technical report not standard
 - Content:
 - Norton or Thevenin equivalent representation for type 3 and type 4 wind turbines
 - Model validation case definitions
- Cigre TB 776 (2019)
 - Network modelling
- Cigre WG C4.49: Multi-frequency stability of converter-based modern power systems (2021-06)
 - Linear modelling for small system stability studies, time domain simulations, frequency and sequence coupling
 - Mitigation (stability requirements, resonance studies, active damping...)
- Cigre WG C4.65: Specification, Validation and Application of Harmonic Models of Inverter Based Resources (2021-Q3)
- IEC New work item proposal (NWIP) under preparation

EMT modelling

- Informative annex in IEC 61400-27-2 on specification of generic model interface
- Cigre WG B4.82 / IEEE: Guidelines for Use of Real-Code in EMT Models for HVDC, FACTS and Inverter based generators in Power Systems Analysis (2019-09)
 - Specify necessary parameters
 - Comparison of "real-code" (OEM) models to generic models
- IEC New work item proposal (NWIP) under preparation

Generic fundamental frequency ("RMS") models

- IEC 61400-27-1: Wind energy generation systems Electrical simulation models Generic models
- WECC Second Generation Wind Turbine Models
- IEC 61970-302: Common information model (CIM) dynamics.

Scope of IEC 61400-27 – general

- IEEE/CIGRE Joint Task Force on Stability Terms and Definitions has categorized power system stability
- IEC 61400-27 generic models are intended for short term stability studies
- Models simulate fundamental frequency positive sequence

Classification of power system stability according to IEEE/CIGRE Joint Task Force on Stability Terms and Definitions. (© IEEE 2004)

Scope of IEC 61400-27 models – Limitations

- The models are not intended for *long term stability analysis*.
- The models are not intended for investigation of *sub-synchronous interaction* phenomena.
- The models are not intended for investigation of the *fluctuations* originating from wind speed variability in time and space. This implies that the models do not include phenomena such as turbulence, tower shadow, wind shear and wakes.
- The models do not cover phenomena such as *harmonics, flicker* or any other *EMC* emissions included in the IEC 61000 series.
- Linearisation for *eigenvalue analysis* is not trivial nor necessarily appropriate based on these simplified models.
- This standard does not address the specifics of *short-circuit calculations*.
- The models are not applicable to studies of *extremely weak systems* including situations where wind turbines are islanded without other synchronous generation as well as cases with extremely low short-circuit ratios.
- Models do not include *negative and zero sequences*

Scope of IEC 61400-27 – Potential users

- **TSOs and DSOs** are end users of the models, performing power system stability studies as part of the planning as well as the operation of the power systems,
- Wind turbine manufacturers will typically provide the wind turbine models to the owner,
- *Wind plant owners* are typically responsible to provide the wind power plant models to TSO and/or DSO prior to plant commissioning,
- **Developers of power system simulation software** will use the standard to implement standard wind power models as part of the software library, and
- Certification companies will use standard to verify simulation models
- *Education and research* communities, who can also benefit from the generic models, as the manufacturer specific models are typically confidential.

IEC 61400-27-1 Edition 2.0 (2020-07)

- Wind energy generation systems Electrical simulation models – Generic models
 - Scope
 - References and definitions
 - Functional specification of models
 - Formal specification of
 - Modular structure of models
 - Modules
 - Includes models for
 - Wind turbine types 1-4
 - Auxciliary equipment
 - Wind power plants

Modular structure

- Modular struture was introduced in IEC 61400-27-1 Edition 1.0:
 - Sørensen, Poul Ejnar Andresen, Bjørn Fortmann, Jens Pourbeik, Pouyan. Modular structure of wind turbine models in IEC 61400-27-1. IEEE Power & Energy Society General Meeting, Vancouver 2013
 - Flexible structure supporting
 - needs for revisions of future generic models
 - **share of modules** between different wind turbine types (e.g. mechanical module) and between wind tubines and wind power plants (e.g. grid measurement module)
 - expansion of models with non-generic features (e.g. manufacutrer specific models or new control features)

DTU

Modular structure of WT models – Edition 2.0 (tbc)

- WT model refers to the wind turbine terminal (WTT)
- Can receive external reference values
- Uses software built-in models for "electrical system" module
- Grid measurement block is used twice (one formal specification but different parameters)

Wind turbine types

Type 2

Type 4

Type 1A modular structure

- Two type 1 models:
 - 1A: fixed pitch angle
 - 1B: UVRT pitch control
- Type 1: Directly connected induction generator:
 - No WT reference values
 - No generator control
- Subtype 1A:
 - No pitch control

Module specification example – mechanical module

- Power input chosen (could have been torque instead)
- All modules are specified by a block diagram and a parameter list
- Models are in per-unit (no gear ratio)
- All model parameters are listed:

Symbol	Base unit	Description	Category
$H_{\rm WTR}$	S	Inertia time constant of WT rotor	Туре
$H_{\rm gen}$	S	Inertia time constant of generator	Туре
k	T _{base}	Drive train stiffness	Туре
С	T_{base}/Ω_{base}	Drive train damping	Туре

Type 4A modular structure

- Two type 4 models:
 - 4A: Full DC chopper capacity
 - 4B: Limited DC chopper capacity
- Type 4: Full converter generator system
 - Aerodynamic system and associated pitch control not modelled
- Subtype 4A:
 - no mechanical oscillations
- WT reference values:
 - P_{WTref} :
 - Active power
 - x_{WTref} :
 - Reactive power
 - Voltage (delta)

DTU

Type 4A generator control modular sub-structure

- P-control: specific for type 4A
- Q-control: same as for type 3 and type 4 (A and B)
- Current limitation:
 - Maximum current depending on P/Q-priority
 - Includes voltage limitation
- Q limitation:
 - Lookup table (e.g. from grid code)

Interfaces between turbine, plant control and grid models

Next slide

WP control

and

comunication

model

Reference

values

WT

model

STATCOM model system

collection

ower

model

WTT

WP

reference

values

- Plant reference values:
 - P_{WPref}:
 - Active power
 - x_{WPref} :
 - Reactive power
 - Power factor
 - Voltage
- WT and STATCOM referencevalues:
 - P_{PDref} :
 - Active power
 - x_{PDref} :
 - Reactive power
 - (Delta) voltage

POC

WP control and communication model

- substructure

- 3 communication modules:
 - Same dynamic specification
 - Different parameters

Power collection system models - aggregation

Link to WECC / IEEE models

- The Western Electric Coordinating Council (*WECC*) Renewable Energy Modeling Task Force, in North America, *and* the *IEEE Working Group* on Dynamic Performance of Wind Power Generation have jointly developed a set of generic wind turbine models, which are *implemented in Siemens PTI PSS*®*E and GE PSLF*®.
- A 2nd generation of the WECC models (2014) has been developed jointly with the development of IEC 61400-27-1 Ed1 (2015-02).
- As these models have been developed jointly, they are *very similar, but* at this stage, there are also *some differences* the IEC models and the 2nd generation WECC models.
- The main reason for the present differences between WECC and IEC models is that the WECC models mainly aim at credible simulation of the post-fault behavior of the wind plant behavior with a minimum model complexity, while the IEC models include more details to meet more demanding European requirements for model accuracy during faults.
- IEC models aimed to be *compatible* with WECC models, but *not 100%* successful

Comparison og IEC and WECC models

- Comparisons between IEC 61400-27-1 Ed 1.0 and WECC 2nd generation is performed in
 - Göksu, Ömer; Sørensen, Poul Ejnar; Morales, Ana; Weigel, Stefan; Fortmann, Jens; Pourbeik, Pouyan. Compatibility of IEC 61400-27-1 Ed 1 and WECC 2nd Generation Wind Turbine Models. 15th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, Vienna, 2016
- Simulation tools
 - IEC models in Power Factory (DIgSILENT)
 - WECC models in PSS/E
- Simulation case: WECC test system

- Reasons for deviations:
 - No stator current limits in WECC models
 - Minor differencies in generator system models
 - Differencies in active damping models

IEC Common Information Model (CIM)

- IEC Technical Committee TC57 deals with the scope Power systems management and associated information exchange.
- As part of this scope, TC57 defines
 Common Information Model (CIM) standards for exchange of power systems data.

DTU

IEC CIM standards and link to IEC 61400-27

- TC57 standards for Common Information Model (CIM) are published in IEC 61400-3xx series:
 - IEC 61970-301:2016 Common information model (CIM) base
 - for exchange of the *static data* of elements of the power systems.
 - IEC 61970-302:2018 Common information model (CIM) *dynamics*.
 - This CIM dynamics standard is based on available standardized models by IEC or IEEE.
 - Uses the models specified in IEC 61400-27-1 to represent the wind power dynamics.

- The ENTSO-E Common Grid Model Exchange Standard (CGMES) is a superset of IEC CIM standards (including IEC 61970-30x)
 - CGMES Dynamics group compares software vendor implementations in PowerFactory, Eurostag, NETOMAC, Neplan.

Validation of fundamental frequency ("RMS") models

Scope of IEC 61400-27 model validation – general

- The validation procedures are applicable to the generic models specified in IEC 61400-27-1 and to other fundamental frequency wind power plant models and wind turbine models.
 - Positive sequence
 - Negative sequence
- Uses tests from the IEC 61400-21 series
 - Part 21-1 Wind turbines published 2019
 - Part 21-2 Wind power plants *under development*

Scope of IEC 61400-27 model validation – limitations

- The validation procedure does not specify any requirements to model accuracy. It only specifies measures to quantify the accuracy of the model
- The validation procedure does not specify test and measurement procedures, as it is intended to be based on tests specified in IEC 61400-21.
- The validation procedure does not include validation of steady state capabilities e.g. of reactive power, but focuses on validation of the dynamic performance of the models.
- The validation procedure does not cover long term stability analysis.
- The validation procedure does not cover investigation of the fluctuations originating from wind speed variability in time and space.
- The validation procedure does not cover phenomena such as harmonics, flicker or any other EMC emissions included in the IEC 61000 series.
- The validation procedure does not cover eigenvalue calculations for small signal stability analysis.
- This validation procedure does not address the specifics of short-circuit calculations.

Model validation – wind turbine LVRT test

 Standard procedure for test of wind turbine response to voltage dips (low voltage ride through) is specified in IEC 61400-21

Model validation – wind turbine level

• Expected accuracy is higher in quasi steady state windows than in transient windows

Sørensen, Poul Ejnar ; Andresen, Björn ; Bech, John ; Fortmann, Jens ; Pourbeik, Pouyan. Progress in IEC 61400-27. In Proceedings of the 11th International Workshop on Large-Scale Integration of Wind Power into Power Systems as well as on Transmission Networks for Offshore Wind Power Plants, 2012, Lisbon (PT), 13-15 Nov.

Error statistics calculation

- Definition of windows
- Error calculations
 - Max error (x_{MXE})
 - Mean error (x_{ME})
 - Mean absolute error (x_{MAE})
- Selection of windows:

Window	x _{MXE}	\mathbf{x}_{ME}	\mathbf{x}_{MAE}
Pre fault	Full	Full	Full
Fault	QSS	Full	QSS
Post fault	QSS	Full	Full

Response to reference value changes

Settling time validation

 Measurement -Simulation Unfortunate tolerance Tolerance band band: - Small deviations of simulation from measurement can result in large differencies in settling times • In such cases tolerance band can be adjusted Simulation settling time Measurement settling time

- - Reference

Playback vs. full system validation

- Full system validation
 - Includes grid model and model for test equipment in simulation
 - Adds uncertainty to WT / WP model validation

- Playback validation
 - Uses measured terminal variable (e.g. voltage) as input to simulation
 - Removes interactions between WT / WP and grid

Model validation – plant level

- TSO measurements on 56 MW wind power plant in France
 - PMU measurements in Point of Connection (PoC) (V, P, Q)
- Case: power factor step change

Göksu, Ömer; Altin, Müfit; Fortmann, Jens; Sørensen, Poul. Field Validation of IEC 61400-27-1 Wind Generation Type 3 Model with Plant Power Factor Controller. IEEE Transactions on Energy Conversion, Vol. 31, No. 3, 2016, p. 1170 - 1178.

Fig. 2. The WPP layout, grid, and PMU location [Sbase=100 MVA].

Model validation – plant level

- Measured and simulated response to power factor step change
- Small error in simulated Q:
 - Mainly caused by *external* voltage fluctuations not in the "full grid" model

Fig. 7. Measured (solid gray) and simulated (dashed black) reactive power during WPP power factor change.

Play-back in validation

- Long term simulation: already played back power
- "Full grid" model:

 "Play-back" approach: :

 "Play-back" measured voltage to PoC

Summary and outlook

Summary and outlook

- Published IEC standards:
 - Generic fundamental frequency positive sequence models
 - Model validation procedures for positive and negative sequencies
 - Common Information Model static and dynamic
- Outlook
 - Generic negative sequence models
 - Validation of multifrequency models
 - Validation of EMT models

