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The WinGrid Project

EU H2020 Marie Curie Innovative Training Network (ITN)

The WinGrid consortium aims to train and launch the next
generation of researchers on power system integration
issues associated with the large-scale deployment of wind
generation, focusing particularly on modelling and control
aspects of wind turbine and grid interface design, system
stability and robust implementation

Expert group of 7 leading universities and one large company
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European RES Transformation
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System Challenges 2030
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Power System of the Future

Higher net load variability + uncertainty
Changing system service requirements

— New reserve + ramping products + voltage support
Fewer conventional plant on-line

— Increased (conventional) plant cycling

— Reduction in synchronous inertia + synchronising torque
Sustainable network development

— (Short-term) renewables curtailment
— |Increased network utilisation + active network measures

System restoration and blackstart
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Flexibility Needs by Region 2030

Phases of integration with varia' ble rene
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Grid Stability Challenges
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Technical Scarcities
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European Continental Area
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System Frequency Response
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Mitigation Measure Difficulty

Potential Solutions

Legend

Distributed Controls
Experimental

Grid Forming Inverter
Early Commercial

Commercial

Advanced Energy Management System
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Technology Capability Chart
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Integrated System Planning

Future policy initiatives,
\ energy storage needs,
system operating procedures,

resource adequacy,
regulations and grid codes,
market structures, ...

Techno-Economic
Plant Performance |\

\ System

Operational flexibility, SChedUImg \'

increased load electrification, \
home heating technologies,

plant cycling and system dynamics,

impact on investment decisions, \

Network
Power Flow \

network expansion, System
demand-side response, ... Stability 6
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Energy Systems Framework
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Rebalancing Revenue Streams

Present Day Future

Reward flexibility
. . “ye 1 | Ancillary Services/
Reward service reliability
. . Capacity Payments
Availability vs. performance
reward mechanisms

Capacity Payments

Higher renewables
utilisation

Energy Payments Energy Payments

Lower energy prices
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System Service Definitions

e Standard product concept

— Minimum criteria must be met
— Exceeding minimum criteria not rewarded
— ‘Good’ fit for conventional generation

* Superproduct concept

— Combination of several sub-products
— Single provider or aggregator

* Supermarket concept
— Technology neutrality promoted
— Time varying availability vs. time varying needs
— Complex (opaque?) decision making process
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Synchronous Inertial Response
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Fast Frequency Response

50.2
—Fre
50 - b
\ —AP
49.8
T 49.6
G 294
O 49,
3
3 29.2
Q
-
- 49

DDDDDD



Fast Frequency Response Options?
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FFR Response Tuning
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Emulated Inertial Response (MW)

Modified FFR (Wind) Response
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Reactive Power Markets

Traditional role of transmission & distribution
system operator to support network voltage

— STATCOM / SVC / sync compensator, etc. investments
— Dynamic line rating, power flow controls
— High temperature low sag (HTLS) conductors

Steady-state & dynamic reactive power products

— Temporal scarcity + locational scalars

In competition with the TSO / DSO?

— Access to effectiveness heat maps

Prioritisation for zero carbon reactive sources?
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Dynamic Reactive Response
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Voltage Dip-Induced Frequency Dips

V4 Node Voltage
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Voltage Dip-Induced Frequency Dips
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Post-Fault Active Power Recovery
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Voltage and

Active Power

Post-Fault Active Power Recovery
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Payment Arrangements

Scalars
IYETIE]

Performance scalar ~ Reliability of service
~ Speed of response
~ Dynamic response (non-stepped)
~ Enhanced delivery (multiple products)
~ Scarcity of supply (temporal and locational)
~ Availability forecast accuracy ?

Volume
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Power System Transition
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4 November 2006
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Grid-Forming Converters

SG — Synchronous
generator

What to follow?

Some [ many future
. converters need to be
S grid-forming

Existing (wind + solar)
converters are grid-following




100% Converter-Based Grids

Wind + Solar

No conventional synchronous generation

— Rotational inertia? Voltage support? Fault contribution?

What is meant by system frequency?
Achieving load balancing with ‘local’ controls?
Operational rules in a ‘100%’ state?
Requirement for (new) system services?
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Minimum Grid-Forming Share

® Major load centres
O Grid-forming converter
0 Grid-following converter

System grid-forming ratio
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Grid-Forming Questions

How should grid-forming be future-proof defined?
— Black start capability?

Grid-forming a (future) requirement or an option?
— Role for synchronous condensers?

Should grid-forming be the (sole) responsibility of
the system operator?

Should grid-forming capability be mandated
through grid codes?

Can grid-forming capability be robustly supplied
through system service arrangements?
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... Some Open Questions

How best to achieve cost effective operation while
maintaining system stability with increasing RES?

Can we avoid building new lines while facilitating
demand growth and new generation?

Growth and nature of self-consumption?

How to incentivise plant portfolios which maintain
system adequacy?

Need for and desirability of seasonal storage?

Should CO, reduction objectives outweigh economic
/ least cost motivations? T
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