

Modal analysis of Converter Based Power Systems

POWERING GOOD FOR SUSTAINABLE ENERGY

2021-05-25, Mats Larsson, Hitachi ABB Power Grids Research

Agenda

HITACHI ABB

- Stability of Nonlinear Systems: Fundamentals
- LTI Modelling of converter and grid systems
- Modal decomposition
- Practical Example: HVDC Connected Offshore Wind Farm

Example: Pendulum

HITACHI ABB

Non-linear state space form

$$\dot{x} = f(x)$$

with

$$f(x) = \begin{bmatrix} \omega \\ -\frac{g}{l}\sin(\theta) - \frac{k}{m}\omega \end{bmatrix}$$

Equilibrium Points

HITACHI

A point $x = x^*$ in the state space is said to be an equilibrium point of the nonlinear system $\dot{x} = f(x)$ if $x(t_0) = x^* \Rightarrow x(t) = x^*$, for all $t > t_0$ that is, if the state starts at $x = x^*$, it will remain at x^* for all future time. Consequently, equilibrium points can be found by solving the equation f(x) = 0See [1]

Pendulum Example:

$$f(x) = \begin{bmatrix} \omega \\ -\frac{g}{l}\sin(\theta) - \frac{k}{m}\omega \end{bmatrix} = 0 \Longrightarrow \omega = 0, \theta = n\pi \text{ for all integer } n$$

HITACHI ABB POWER GRIDS

 $\ensuremath{\mathbb{C}}$ Hitachi ABB Power Grids 2020. All rights reserved

If $x = x^*$ is an equilibrium point of the nonlinear system where $f : D \to \mathbb{R}^n$ is continuously differentiable and D is a neighbourhood of $x = x^*$. Let

$$A = \left. \frac{\partial f}{\partial x}(x) \right|_{x = x^*}$$

Then,

- 1. The equilibrium point $x = x^*$ is asymptotically stable if $\operatorname{Re} \lambda_i < 0$ for all eigenvalues of A.
- 2. The equilibrium point $x = x^*$ is unstable if $\operatorname{Re} \lambda_i > 0$ for one or more of the eigenvalues of A.

See [1]

HITACHI ABB POWER GRIDS

Pendulum down - Stable equilibrium

$$x = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Longrightarrow \lambda_{1,2} = \begin{bmatrix} -0.2500 - j3.1237 \\ -0.2500 + j3.1237 \end{bmatrix}$$

Pendulum upright - Unstable equilibrium

HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

6

Conditions

HITACHI

Eigenvalues of Jacobian matrix (A) are effective indicators of stability of nonlinear systems

But, observe following conditions:

- Equilibrium points need to exist => LTI modelling
- Continuously differentiable f(x) => Approximation of converter switching and sampling behaviour
- Jacobian matrix (A) needs to be calculated => Computer-aided modelling and automatic linearization
- Validity only in a limited neighbourhood (D) of equilibrium point => robust analysis

A Typical Converter System

HITACHI

Two-level Converter with Control

Observations

Violates assumptions for eigenvalue based analysis

- Switching harmonics
- Time periodic signals
- Sampling in control system

To do:

- Transform converter from switched to average model
- Transform sampled elements to continuous time
- Transform continuous LTP elements to LTI form

Coordinate Changes abc, dq and alpha-beta frames

Transformation Matrices

examples : $\mathbf{v}_{dq0} = C \mathbf{v}_{ab0}, \, \mathbf{v}_{abc} = P^T \mathbf{v}_{dq0}$

Look up formulas $C = \sqrt{\frac{2}{3}} \begin{pmatrix} 1 & -\frac{1}{2} & -\frac{1}{2} \\ 0 & \frac{\sqrt{3}}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} & \frac{\sqrt{2}}{2} \end{pmatrix}, \ C^{T} = C^{-1}$ **Clarke Transform** $R = \begin{pmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{pmatrix}, \ R(-\theta) = R^{T}$ Rotation in dq0-frame $P = R^T C$, with $\theta = 2\pi f_{nom} t$ Park transform $P^T = P^{-1}$ $\frac{dP}{dt} = \omega \mathbf{J}_{dq0}^{T} P \qquad \mathbf{J}_{dq0} = \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$ $\frac{dP^{T}}{dt} = \omega P^{T} \mathbf{J}_{dq0}$ Park transform derivative

HITACHI ABB POWER GRIDS

© Hitachi ABB Power Grids 2020. All rights reserved

LTP vs LTI modelling of Three phase AC Power systems

Inductor in abc frame

Stationary conditions do not correspond to an equilibrium point:

$$L_{abc} \frac{di_{abc}}{dt} = v_{abc} \qquad \qquad L_{abc} = \begin{bmatrix} L_s & L_m & L_m \\ L_m & L_s & L_m \\ L_m & L_m & L_s \end{bmatrix}$$

Inductor in dq frame

Stationary conditions correspond to equilibrium points

$$L_{dq0}\frac{di_{dq0}}{dt} + J_{dq0}\omega_{s}i_{dq0} = v_{dq0} \qquad L_{dq0} = \begin{bmatrix} L_{s} - L_{m} & 0 & 0\\ 0 & L_{s} - L_{m} & 0\\ 0 & 0 & L_{s} + 2L_{m} \end{bmatrix}$$

Derivation

HITACHI

Inductor equations

$$\begin{split} L_{abc} \frac{d(i_{abc})}{dt} &= u_{abc} \\ L_{abc} \frac{d(P^{T}i_{dqo})}{dt} &= P^{T}u_{dqo} \\ L_{abc} \left(P^{T} \frac{di_{dqo}}{dt} + \frac{dP^{T}}{dt}i_{dqo}\right) &= P^{T}u_{dqo} \\ L_{abc} \left(P^{T} \frac{di_{dqo}}{dt} + \omega P^{T} \mathbf{J}_{dq0}i_{dqo}\right) &= P^{T}u_{dqo} \\ PL_{abc} \left(P^{T} \frac{di_{dqo}}{dt} + \omega P^{T} \mathbf{J}_{dq0}i_{dqo}\right) &= PP^{T}u_{dqo} \\ PL_{abc} \left(P^{T} \frac{di_{dqo}}{dt} + \omega P^{T} \mathbf{J}_{dq0}i_{dqo}\right) &= PP^{T}u_{dqo} \\ PL_{abc} \left(P^{T} \frac{di_{dqo}}{dt} + \omega P^{T} \mathbf{J}_{dq0}i_{dqo}\right) &= PP^{T}u_{dqo} \\ PL_{abc} \left(P^{T} \frac{di_{dqo}}{dt} + \omega \mathbf{J}_{dq0}i_{dqo}\right) &= u_{dqo} \end{split}$$

Impedance Matrix Transformation

Symmetrical case

$$L_{abc} = \begin{bmatrix} L_s & L_m & L_m \\ L_m & L_s & L_m \\ L_m & L_m & L_s \end{bmatrix}$$

$$L_{dq0} = PL_{abc}P^{T} = \begin{bmatrix} L_{s} - L_{m} & 0 & 0\\ 0 & L_{s} - L_{m} & 0\\ 0 & 0 & L_{s} + 2L_{m} \end{bmatrix}$$

Results in time varying impedance matrices in the unsymmetrical case

HITACHI

- Two and three level converters can be represented by a gain and a AC/DC power balance equation
- Assumes a constant gain for all frequencies
- Accuracy mainly dependent on carrier frequency/pulse number
- Overmodulation and multilevel converters require special treatment
- Different models for different modulation strategies
- See e.g. [3] for details

Accuracy of Average Model

HITACHI

• Example: sinusoidal PWM with 2kHz carrier, step in modulation index magnitude at 0.05 s

Sampling Approximation

HITACHI

- Pade approximation of sampling delay
- Pade approximation of computation delay
- Transforming controllers to continuous time equivalents

Sampling Approximation

HITACHI

• Zero order hold

$$G(s) = \frac{1 - \mathrm{e}^{-sT}}{sT}$$

- However not well suited for linearization
- Instead use Pade-approximation of

$$Pade_{1}(s) = \frac{-60Ts + 840}{360Ts + 840}$$

$$Pade_{2}(s) = \frac{20(Ts)^{2} - 60Ts + 840}{60(Ts)^{2} + 360Ts + 840}$$

$$Pade_{3}(s) = \frac{-(Ts)^{3} + 20(Ts)^{2} - 60Ts + 840}{(4Ts)^{3} + 60(Ts)^{2} + 360Ts + 840}$$

Time Delay Approximation

HITACHI

Time delay can be represented by a transfer function

$$G(s) = e^{-sT}$$

However not well suited for linearization

Pade-approximation

$$Pade_{1}(s) = \frac{-60(Ts) + 120)}{+60(Ts) + 120)}$$

$$Pade_{2}(s) = \frac{12(Ts)^{2} - 60(Ts) + 120)}{12(Ts)^{2} + 60(Ts) + 120)}$$

$$Pade_{3}(s) = \frac{-(Ts)^{3} + 12(Ts)^{2} - 60(Ts) + 120)}{(Ts)^{3} + 12(Ts)^{2} + 60(Ts) + 120)}$$

HITACHI ABB POWER GRIDS

Approximation of discrete time systems

HITACHI

Discrete Time

Example: PI Controller

$$U(z) \longrightarrow H(z) \longrightarrow Y(z)$$

$$U(s) \longrightarrow G(s) \longrightarrow Y(s)$$

See [4] for details.

HITACHI ABB POWER GRIDS

Approximation Accuracy

HITACHI ABB

PI Controller

$$k_p = 10, T_i = 0.01, T_s = 0.0001s$$

 $G(s) = \frac{0.1 \text{ s} + 10}{0.01 \text{ s}}$ $H(z) = \frac{0.201 \text{ z} - 0.199}{0.02 \text{ z} - 0.02}$

LTI Conversion of LTP Control Blocks

HITACHI

HITACHI ABB POWER GRIDS

Example: Low Pass filter

HITACHI

Low pass filter

$$G_{abc}(s) = \begin{pmatrix} \frac{k}{Ts+1} & 0 & 0\\ 0 & \frac{k}{Ts+1} & 0\\ 0 & 0 & \frac{k}{Ts+1} \end{pmatrix}$$

$$sX_{dq0} = \begin{pmatrix} -400\pi & 100\pi & 0\\ -100\pi & -400\pi & 0\\ 0 & 0 & -400\pi \end{pmatrix} X_{dq0} + \begin{pmatrix} 32 & 0 & 0\\ 0 & 32 & 0\\ 0 & 0 & 32 \end{pmatrix} U_{dq0}$$

$$Y_{dq0} = \begin{pmatrix} \frac{25\pi}{2} & 0 & 0\\ 0 & 0 & \frac{25\pi}{2} \end{pmatrix} X_{dq0} + \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} U_{dq0}$$

$$SX_{abc} = \begin{pmatrix} -400\pi & 0 & 0\\ 0 & -400\pi & 0\\ 0 & 0 & -400\pi \end{pmatrix} X_{abc} + \begin{pmatrix} 32 & 0 & 0\\ 0 & 32 & 0\\ 0 & 0 & 32 \end{pmatrix} U_{abc}$$

$$Y_{dp0} = \begin{pmatrix} \frac{25\pi}{2} & 0 & 0\\ 0 & 0 & \frac{25\pi}{2} \end{pmatrix} X_{dq0} + \begin{pmatrix} 0 & 0 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{pmatrix} U_{dq0}$$

HITACHI ABB POWER GRIDS

Modal Analysis - Workflow and Goals

HITACHI

Goals

1. Modelling of grid-converter systems

2. Linearization

3. Modal decomposition

- Stability analysis
- Root-cause analysis
- Control design studies

Example: Inverter to Grid System

HITACHI

Components

Converter

- Converter with current control similar to those used in solar PV/wind power plant
- PLL
- Grid filter

Grid and Load

- Weak grid
- Resistive/Capacitive load

Converter

HITACHI

Modelling with ConverterStab

Converter

- Average model of converter
- Switching delay approximated by first order Pade approximation (0.75-1.5*Tswitch)
- PI Current control with decoupling in dq frame
- PLL with PI controller

Eliminates need to manually derive analytical expressions for input/output impedance

Simulation: Base Case

HITACHI

HITACHI ABB POWER GRIDS

A – System Matrix

HITACHI

System Matrix

- Obtained through automatic differentiation of Modelica model
- A is a sparse matrix illustrating coupling between elements
- · Eigenvalues can be used to determine stability
- The A matrix models the system response around the equilibrium point used for linearization

$$\dot{x} = f(x)$$
$$\dot{x} \approx \frac{\partial f}{\partial x}\Big|_{x=x^*} = Ax$$

Example

HITACHI ABB POWER GRIDS

Modal Decomposition

HITACHI

Given an initial state the eigenresponse of the system $\dot{\mathbf{x}} = \mathbf{A}\mathbf{x}$ is :

$$x(t) = e^{At} x(0)$$

$$e^{At} = \sum_{i=1}^{n} e^{\lambda_i t} r_i l_i \text{ where } \lambda_i = \alpha_i + j\omega_i \text{ are the eigenvalues of A}$$
$$R = [r_1, \dots, r_n], L = [l_1, \dots, l_n]^T = R^{-1}$$
$$x(t) = \sum_{i=1}^{n} e^{(\alpha_i + j\omega_i)t} r_i l_i x(0) = \sum_{i=1}^{n} e^{\alpha_i t} (\cos \omega_i t + j \sin \omega_i t) r_i l_i x(0)$$

 $x(t) = \sum_{i=1}^{\infty} e^{(\alpha_i + j\omega_i)t} r_i l_i x(0) = \sum_{i=1}^{\infty} e^{\alpha_i t} (\cos \omega_i t + j \sin \omega_i t) r_i l_i x(0)$

HITACHI ABB

Summing the modal contributions up results in original response ٠

Sum of contributions of mode 1 thru n

HITACHI ABB POWER GRIDS

Mode Damping and Frequency

HITACHI

System response can be written as:

$$x(t) = \sum_{i=1}^{n} \underbrace{e^{\alpha_{i}t}}_{\text{exponential part}} \underbrace{(\cos \omega_{i}t + jsin\omega_{i}t)}_{\text{oscillatory part}} r_{i}l_{i}^{T}x(0)$$

• Right half plane eigenvalues – exponential growth

 α_i

- Left half plane eigenvalues exponential decay
- Complex eigenvalues oscillatory response
- Real eigenvalues non-oscillatory response

Definitions:

- Attenuation
- Mode frequency
- Damping ratio

$$\frac{\omega_i}{\zeta_i} = \frac{-\alpha_i}{\sqrt{\alpha_i^2 + \omega_i^2}}$$

HITACHI

Participation Factors

$$x(t) = \sum_{i=1}^{n} e^{\alpha_{i}t} (\cos \omega t + j \sin \omega t) \underbrace{r_{i}l_{i}}_{participation} x(0)$$

$$R \odot L^{H} = [r_{1} \dots r_{n}] \odot [l_{1} \dots l_{n}] = \begin{bmatrix} r_{11}l_{11} & \cdots & r_{1n}l_{1n} \\ \vdots & \ddots & \vdots \\ r_{n1}l_{n1} & \cdots & r_{nn}l_{nn} \end{bmatrix} = \begin{bmatrix} p_{11} & \cdots & p_{1n} \\ \vdots & \ddots & \vdots \\ p_{n1} & \cdots & p_{nn} \end{bmatrix} \int ggg$$

 p_{ij} is called participation factor for state *i* in mode *j*

Modal Analysis

HITACHI

Mode #	Frequency	Damping	eq. PM	Dominant State:
1	72.83 Hz	-1.29%	-1.47	converter.controller.pll.integrator.x[1]
2	969.92 Hz	37.39%	37.22	converter.choke.i[1]
3	858.84 Hz	43.39%	41.72	converter.choke.i[1]
4	207.74 Hz	52.06%	47.64	L1.i[2]

HITACHI ABB POWER GRIDS

Participation Factors for 73 Hz Mode

HITACHI

Participation Factors

Observations

- The PLL angle state exhibits the strongest participation in the instability -> instability is related to the PLL tuning
- The grid inductance states exhibit the second strongest participation in the instability -> connected to grid strength
- The load capacitance states exhibit the second strongest participation in the instability -> connected to the the prescence of capacitive load

Modal Sensitivity Analysis

HITACHI

Relative Parameter Sensitivites

Unstable 79 Hz mode exhibits strong parameter sensitivities with respect to:

- PII_kp PLL proportional gain
- Lg Grid inductance
- Rload, Cload load resistance and capacitance

Mitigation Methods

HITACHI

Various Modelling Workflows

HITACHI

Modal analysis relies on linearized models of each component

- Transfer function can be identified from time or frequency domain data
- Modal analysis does *not require* exchange of EMT simulation models

Impedance Stability with Black Box Models

HITACHI

Analytic vs Estimated Converter Impedances

Exact Models

Gain Margin: -0.11 dB

Identified Models

Gain Margin: -0.2 dB

Modal Analysis with Black Box Models

HITACHI

Analytic vs Estimated Converter Impedances

Exact Models

eta
e

Identified Models

Mode	Frequency	Damping (%)	Dominant State:
1	80.78	-3.23%	converter.x1
2	240.51	53.49%	C1.v[1]
3	358.15	75.08%	converter.x2

HITACHI

Modal analysis offers a rigorous mathematical framework to diagnose controller stability problems and grid interactions

- Mathematical foundations go back to the days of Euler and Lagrange
- Eigenvalues and eigenvectors of the linearized system can be used to predict stability as well as identify root causes of stability problems
- Approach is practical also for large scale systems with hundreds of converters
- Care must be taken to properly approximate switching and sampling behaviour
- Good accuracy up to around half the switching frequency
- Techniques are available to integrate frequency domain models in modal analysis
- · Parameter sweeps and modal sensitivity studies are useful tools to troubleshoot and optimize control design

[1] Hassan K. Khalil, Nonlinear Systems, Macmillan, 1991.

[2] Modeling of Electromagnetic Transients in Power Systems". In: Modelica Workshop 2000 Proceedings.

Oct. 23, 2000, pp. 93–97.

[3] Modelling and Control of Three-phase PWM Converters, Silva Hiti, PhD Thesis, Virginia Tech, 1995.

[4] KJ Aström, B. Wittenmark, Computer-Controlled Systems: Theory and Design, Third Edition, Dover Books on Electrical Engineering.