

Harmonic resonance and controller interactions A brief tutorial

POWERING GOOD FOR SUSTAINABLE ENERGY 2021-05-25, Mats Larsson, Hitachi ABB Power Grids Research HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

Outline

HITACHI ABB

The increasing importance of power electronics

Harmonic resonance and controller interactions

Overview of analysis techniques

System Level Analysis Example: Wind Farm with HVDC Connection

Conclusion

HITACHI ABB POWER GRIDS

 $\ensuremath{\textcircled{}}$ Hitachi ABB Power Grids 2020. All rights reserved

System Design Requirements are Changing

Example of worlds first HVDC connected wind farm

At higher power levels than 200 MW, severe harmonic distortion occurred, typically around 290 Hz

 Currently no industry consensus on how studies should be made, and on requirements on equipment.

Active WGs:

1. CIGRE C4.49 "Multi-frequency stability of converter-based modern power systems"

2. CIGRE C4/B4.52 "Guidelines for Sub-synchronous Oscillation Studies in Power Electronics Dominated Power Systems"

3. IEC SC8a TR "Control interaction and power system damping (due to grid resonances)"

4. CIGRE B4.81 "Interaction between nearby VSC-HVDC converters, FACTs devices, HV power electronic devices and conventional AC equipment"

5. IEC TR 61000-2-15 "Assessment of instability/non-linear phenomena between AC-DC/DC-DC Converters and the Grid"

6. IEEE P2800 - Standard for Interconnection and Interoperability of Inverter-Based Resources Interconnecting with Associated Transmission Electric Power Systems

Harmonic Resonance

HITACHI

Series resonance

- A small harmonic voltage will generate a large harmonic current
- · Large overvoltage on capacitor

Parallell resonance

- A small harmonic current injection will generate a large harmonic voltage
- · Large overvoltage at harmonic source

Resonance can make otherwise harmless harmonic injections critical

HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

Converter to Resonant Grid System

Impedance Equivalencing

HITACHI ABB

Decomposition

Subsystems can be represented by equivalent impedance:

Impededance matrices

HITACHI ABB POWER GRIDS © Hitachi ABB Power Grids 2020. All rights reserved

9

Passivity Analysis

HITACHI ABB

Background

Passivity is guaranteed if

$$\int_{0}^{T_{obs}} p(t) dt = \int_{0}^{T_{obs}} v^{T}(t) i(t) dt > 0.$$

or, equvalently

$$z(j\omega) + z^{H}(j\omega) > 0,$$

Relative passivity index:

$$R = |(I - z(j\omega))(I + z(j\omega))^{-1}| < 1.$$

Passivity Analysis

Typical Results

Grid system

• Exhibits a small degree of passivity at all frequencies

Current controlled converter system

- Low frequency active region
 - PLL, DC link control, active damping
- High frequency passive region
 - Time delay in sampling and modulation
 - Current control

Non-passive subsystems may contribute to destabilization of grid resonances

HITACHI ABB POWER GRIDS

 $\ensuremath{\mathbb{C}}$ Hitachi ABB Power Grids 2020. All rights reserved

Tracing the root cause of Instability

HITACHI ABB

HITACHI ABB POWER GRIDS

 $\ensuremath{\mathbb{C}}$ Hitachi ABB Power Grids 2020. All rights reserved

System Level Analysis - Impedance Based

Modelling

Interpretation
Visual inspection of yields amplitude and phase margin of critical mode
Phase margin predicts dominant frequency in harmonic instability
Partitioning introduced additional combinatorial dimension

• Difficult to apply in practical grids

HITACHI ABB POWER GRIDS

 $\ensuremath{\mathbb{C}}$ Hitachi ABB Power Grids 2020. All rights reserved

HITACHI ABB POWER GRIDS

© Hitachi ABB Power Grids 2020. All rights reserved

Conclusion

- Grid resonances can pose a significant challenge to converter control
- Poorly damped low frequency grid resonances can be managed by converter control
- Poorly damped high frequency resonances need defensive tuning or passive filter solutions
- Modal analysis and Impedance analysis provides consistent results
- Impedance analysis hard to apply in practical cases

POWERING GOOD FOR SUSTAINABLE ENERGY

HITACHI ABB POWER GRIDS

© Hitachi ABB Power Grids 2020. All rights reserved