# **Introduction to Renewables**

#### **Frede Blaabjerg**

#### Professor, Villum Investigator fbl@et.aau.dk



# Outline

#### Overview of Renewable Energy Development

State-of-the-art; Mission profiles; Grid codes; Reliability and cost

#### Power Converters for Renewable Energy

PV application; Wind power application; Power semiconductor devices; Basic control

#### **Future Challenges and Discussions**

PV application; Wind power application; Other Generators



#### **State of the Art – Renewable Evolution**



#### Worldwide Installed Renewable Energy Capacity (2000-2020)

- 1. Hydropower also includes pumped storage and mixed plants;
- 2. Marine energy covers tide, wave, and ocean energy
- 3. Solar includes photovoltaics and solar thermal
- 4. Wind includes both onshore and offshore wind energy

(Source: IRENA, "Renewable energy capacity statistics 2019", http://www.irena.org/publications, March 2019)



### **Global RES Annual Changes**



#### Global Renewable Energy Annual Changes in Gigawatt (2001-2020)

- 1. Hydropower also includes pumped storage and mixed plants;
- 2. Marine energy covers tide, wave, and ocean energy
- 3. Solar includes photovoltaics and solar thermal
- 4. Wind includes both onshore and offshore wind energy

(Source: IRENA, "Renewable energy capacity statistics 2019", http://www.irena.org/publications, March 2019)



#### **Share of the Net Total Annual Additions**



(Source: IRENA, "Renewable energy capacity statistics 2020", http://www.irena.org/publications, March 2020)



### **State of the Art Development – Wind Power**



Global installed wind capacity (until 2020): 733 GW, 2020: 111 GW

- Higher total capacity (+50% non-hydro renewables).
- Larger individual size (average 1.8 MW, up to 6-8 MW, even 15 MW).
- More power electronics involved (up to 100 % rating coverage).

(Source: IRENA, "Renewable capacity statistics 2021", http://www.irena.org/publications, March 2021)

#### **State of the Art Development – Wind Power**



#### Global installed wind capacity (until 2020): 733 GW, 2020: 111 GW

- Higher total capacity (46% non-hydro renewables; ~1/4 total incl. hydro).
- Larger individual size (average 1.8 MW, up to 6-8 MW, even 15 MW).
- More power electronics involved (up to 100 % rating coverage).

(Source: IRENA, "Renewable capacity statistics 2021", http://www.irena.org/publications, March 2021)

NEW GRO

#### **State of the Art – PV Cell Technologies**

#### **Best Research-Cell Efficiencies** 52 Sharp Multijunction Cells (2-terminal, monolithic) **Thin-Film Technologies** Soitec (IMM, 302x) NREL LM = lattice matched • CIGS (concentrator) (4-J, 297x) Boeing (6-J.143x) 48 MM = metamorphic CIGS Spectrolab FhG-ISE/ Soited 47.1% IMM = inverted, metamorphic O CdTe SolarJunc (LM, 364x) (LM, 942x) O Amorphous Si:H (stabilized) ▼ Three-junction (concentrator) Spectrolab | FhG-ISE SpireSemicon (MM, 299x) (MM, 454x) 44.4% V Three-junction (non-concentrator) 44 MM. 406x **Emerging PV** ▲ Two-iunction (concentrator) O Dye-sensitized cells Boeing-Spectrolab Boeing-Spectrolab Two-junction (non-concentrator) Soited (MM,179x) (4-J, 327x) 240x) O Perovskite cells (4-J, 319x) Four-junction or more (concentrator) Boeing A Perovskite/Si tandem (monolithic) NREL (6-J) SolarJunc 40 Four-junction or more (non-concentrator) NREL (IMI Spectrolab (5-(IMM, 325.7x) (LM, 418x) Organic cells (various types) 39.2% NREL ▲ Organic tandem cells Boeing Sharp (IMM) Single-Junction GaAs 37.9% Spectrolab Inorganic cells (CZTSSe) Boeing ▲ Single crystal Sharn (IMM 36 Quantum dot cells (various types) NREL (38.1x) Spectrol NRF 35.5% A Concentrator Sharn (IMM) Perovskite/CIGS tandem (monolithic) Spectrola (IMM **V** Thin-film crystal NREL ..... REL (467x) Cell Efficiency (%) **Crystalline Si Cells** Spectro - - NRFI 32.9% Japar 32 1026x) FhG-ISE (117x) Single crystal (concentrator) IES-UPM Varian NREL (258x) NREI Single crystal (non-concentrator) (216x) Alta Devices Multicrystalline Radboud Uni Varian **A**HZB • Silicon heterostructures (HIT) 28 Amonix (92x) 27.69 ▼ Thin-film crystal Stanford ISEL Korea Univ (140x) SolarFrontier 24 -HZB First Solar **JinkoSola** (T.J. Watson A-NREL 23.39 UNSW / Trina Sola UNSW Research Center) (14x)---anadian 23.30 Eurosolare 20 ARCO Georgia Univ. of 21.2% Queensland SJTU-UMass Westing INSW NREL NREL NREL 17.4% ● 16.6% ◇ -SCUT-CSU 16 U. So. NREL SolarFron Solarex No. Carolina Matsushita laynergy Tek of Taiwan AIST NREL UniSolar State U. Mitsubishi A-ICCAS (aSi/ncSi/ncS Sola Boeing ro-CIS 14.0% 〇 UniSolar HKUST 12.6% ARCO ARCO O EPFL 12 Kodak Photon Ene UCLA ICCAS AMETER Matsushita U.Toronto RCO 8 Solarmer U. Toronto NREL / Konarka Konark EPFL U. Toronto U.of Maine U Linz Groningen (PbS-QD) Plextronics 🔏 Heliate Siemens 0 U. Linz U. Dresden NREL U. Linz (ZnO/PbS-QD) 1995 1975 1980 1985 1990 2000 2005 2015 2020 2010

NEW GROUN ORG UNINE

National Renewable Energy Laboratory, https://www.nrel.gov/pv/cell-efficiency.html

### **State of the Art Development – Photovoltaic Power**



Global installed solar PV capacity (until 2020): 714 GW, 2020: 127 GW

- More significant total capacity (45% non-hydro renewables; ~1/4 total incl. hydro).
- Fastest growth rate (22% between 2018-2020, 33% in 2018).



#### **State of the Art Development – Photovoltaic Power**



Global installed solar PV capacity (until 2020): 714 GW, 2019: 127 GW

- More significant total capacity (29% non-hydro renewables).
- Fastest growth rate (22% between 2018-2020, 33% in 2018).

HING NEW GROUND REGORD UNIVERST

(Source: Annual Growth for Renewable Electricity Generation by Source, 2018-2020, IEA https://www.iea.org/data-and-statistics/charts/annual-growth-for-renewable-electricity-generation-by-source-2018-2020)

#### **Power Electronics based Renewable Energy Systems**



#### Important issues for converters in renewables:

- Reliability/security of supply
- > Efficiency, cost, volume, protection
- Control active and reactive power
- Ride-through operation and monitoring
- Power electronics enabling technology



≻ ...

### **Requirements for Wind Turbine Systems**



#### **General Requirements & Specific Requirements**



### **Grid Codes for Wind Turbines**

**Conventional power plants** provide active and reactive power, inertia response, synchronizing power, oscillation damping, short-circuit capability and voltage backup during faults.

Wind turbine technology differs from conventional power plants regarding the converter-based grid interface and asynchronous operation

#### Grid code requirements today

- Active power control
- Reactive power control
- Frequency control
- Steady-state operating range
- Fault ride-through capability

#### Wind turbines are active power plants.



### **Requirements for Photovoltaic Systems**



#### **General Requirements & Specific Requirements**



### **Input Mission Profiles for PV Systems**



#### Mission Profile for PV Systems Measured at AAU (201110-201209)

- ► Highly variable solar irradiance
- ► Small power inertia to solar variation quick response of PV panel.
- ► Small temperature inertia to ambient temp. variation small case capacity.
- ► Temperature sensitive for the PV panel and power electronics.



### **Grid Codes for Photovoltaic Systems**

**Grid-connected PV systems** ranging from several kWs to even a few MWs are being developed very fast and will soon take a major part of electricity generation in some areas. PV systems have to comply with much tougher requirements than ever before.

#### **Requirements today**

- Maximize active power capture (MPPT)
- Power quality issue
- Ancillary services for grid stability
- Communications
- ► High efficiency

#### In case of large-scale adoption of PV systems

- Reactive power control
- Frequency control
- ► Fault ride-through capability





## Cost of Energy (COE) – Today (2020)



Cost of Electricity (Energy) by Sources in Germany



 $C_{Cap}$  – Capital cost  $C_{O\&M}$ – Operation and main. cost  $E_{Annual}$  – Annual energy production

#### Determining factors for renewables

- Capacity growth
- Technology development



### **Continue Reducing the Cost**

SunShot Goals by the U.S. Department of Energy



In 2017, DOE's Solar Energy Technologies Office (SETO) announced that the industry had achieved the 2020 cost goal for utility-scale solar of 6¢ per kilowatt hour (kWh).

\*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010–17.



### **Approaches to Reduce Cost of Energy**

$$COE = \frac{C_{Cap} + C_{O\&M}}{E_{Annual}}$$

 $C_{Cap}$  – Capital cost  $C_{O\&M}$  – Operation and main. cost  $E_{Annual}$  – Annual energy production

| Approaches                 | Important and Related Factors                  | Potential |
|----------------------------|------------------------------------------------|-----------|
| Lower C <sub>Cap</sub>     | Production / Policy                            | +         |
| Lower C <sub>O&amp;M</sub> | Reliability / Design / Labor                   | ++        |
| Higher E <sub>annual</sub> | Reliability / Capacity / Efficiency / Location | +++       |

Reliability is an Efficient Way to Reduce COE - Lower C<sub>O&M</sub> & Higher E<sub>Annual</sub>



### **Lifetime Targets in PE Intensive Applications**

| Applications          | Typical design target of Lifetime              |
|-----------------------|------------------------------------------------|
| Aircraft              | 24 years (100,000 hours flight operation)      |
| Automotive            | 15 years (10,000 operating hours, 300, 000 km) |
| Industry motor drives | 5-20 years (60,000 hours in at full load)      |
| Railway               | 20-30 years (73,000 hours to 110,000 hours)    |
| Wind turbines         | 20 years (120,000 hours)                       |
| Photovoltaic plants   | 30 years (90,000 hours to 130,000 hours)       |



### The Scope of Reliability of Power Electronics

#### A multi-disciplinary research area



## **Power Converters for Renewables**



### Wind Turbine Concept and Configurations



Partial scale converter with DFIG



Full scale converter with SG/IG

- ► Variable pitch variable speed
- Doubly Fed Induction Generator
- Gear box and slip rings
- ±30% slip variation around synchronous speed
- Power converter (back to back/ direct AC/AC) in rotor circuit
- State-of-the-art solutions
- Variable pitch variable speed
- Generator

Synchronous generator Permanent magnet generator Squirrel-cage induction generator

- ► With/without gearbox
- Power converter

Diode rectifier + boost DC/DC + inverter Back-to-back converter

Direct AC/AC (e.g. matrix,

- cycloconverters)
- State-of-the-art and future solutions



### **Converter Topologies under Low Voltage (<690V)**



Back-to-back two-level VSC

- Proven technology
- Standard power devices (integrated)
- Decoupling between grid and generator (compensation for non-symmetry and other power quality issues)
- High dv/dt and bulky filter
- Need for major energy-storage in DC-link
- High power losses at high power (switching and conduction losses) → low efficiency

Generator

Diode rectifier + boost DC/DC + 2L-VSC

- Suitable for PMSG or SG.
- Lower cost
- Low THD on generator, low frequency torque pulsations in drive train.
- Challenge to design boost converter at MW.



### **Solution to Extend the Power Capacity**



(a) with multi-winding generator.

(b) with normal winding generator

Parallel converter to extend the power capacity

- State-of-the-art solution in industry (> 3 MW)
- Standard and proven converter cells (2L VSC)
- Redundant and modular characteristics.
- Circulating current under common DC link with extra filter or special PWM



### **PV Inverter System Configurations**





Chapter 03 in *Renewable energy devices and systems with simulations in MATLAB and ANSYS*, Editors: F. Blaabjerg and D.M. Ionel, CRC Press LLC, 2017

### **Grid-Connection Configurations**

Transformer-based grid-connection



Transformerless grid-connection  $\rightarrow$  Higher efficiency, Smaller volume





### **AC-Module PV Converters – Single-Stage**

~ 300 W (several hundred watts)

High overall efficiency and High power desity.



# Buck-boost integrated full-bridge inverter





B.S. Prasad, S. Jain, and V. Agarwal, "Universal Single-Stage Grid-Connected Inverter," IEEE TEC, 2008.C. Wang "A novel single-stage full-bridge buck-boost inverter", IEEE TPEL, 2004.

#### **DC-Module PV Converters – Double-Stage**

~ 300 W (several hundred watts) High overall efficiency and High power desity.

**Conventional DC-DC Converters** 



#### Flyback DC Optimizer





Y. Yang, K. A. Kim, F. Blaabjerg, and A: Sangwongwanich, Advances in Grid-Connected Photovoltaic Power Conversion Systems, Woodhead Publishing, 2018.

### **String/Multi-String PV Inverters**

1 kW ~ 30 kW (tens kilowatts)

High efficiency and also Emerging for modular configuration in medium and high power PV systems.



Bipolar Modulation is used:

- □ <u>No common mode voltage</u>  $\rightarrow$  V<sub>PE</sub> free for high frequency  $\rightarrow$ low leakage current
- □ Max efficiency 96.5% due to reactive power exchange between the filter and  $C_{PV}$  during freewheeling and due to the fact that 2 switched are simultaneously switched every switching
- □ This topology is not special suited to transformerless PV inverter due to low efficiency!



Y. Yang, K. A. Kim, F. Blaabjerg, and A: Sangwongwanich, Advances in Grid-Connected Photovoltaic Power Conversion Systems, Woodhead Publishing, 2018.

### **Transformerless String Inverters**



#### H5 Transformerless Inverter (SMA)

- Efficiency of up to 98%
- Low leakage current and EMI
- Unipolar voltage accross the filter, leading to low core losses

#### H6 Transformerless Inverter (Ingeteam)



- High efficiency
- Low leakage current and EMI
- > DC bypass switches rating:  $V_{dc}/2$
- Unipolar voltage accross the filter



M. Victor, F. Greizer, S. Bremicker, and U. Hubler, U.S. Patent 20050286281 A1, Dec 29, 2005. R. Gonzalez, J. Lopez, P. Sanchis, and L. Marroyo, "Transformerless inverter for single-phase PV systems," IEEE TPEL, 2007. **31** 

### **NPC Transformerless String Inverters**

Neutral Point Clamped (NPC) converter for PV applications



- ➤ Constant voltage-to-ground → Low leakage current, suitable for transformerless PV applications.
- High DC-link voltage ( > twice of the grid peak voltage)



P. Knaup, International Patent Application, Publication Number: WO 2007/048420 A1, Issued May 3, 2007.

#### **Central Inverters**

~ 30 kW (tens kilowatts to megawatts) Very high power capacity.



- Large PV power plants (e.g. 750 kW by SMA), rated over tens and even hundreds of MW, adopt many central inverters with the power rating of up to 900 kW.
- > DC-DC converters are also used before the central inverters.
- > Similar to wind turbine applications  $\rightarrow$  NPC topology might be a promising solution.



Y. Yang, K. A. Kim, F. Blaabjerg, and A: Sangwongwanich, Advances in Grid-Connected Photovoltaic Power Conversion Systems, Woodhead Publishing, 2018.

### **Power Level for Renewable Applications**





Yole Developement. Status of the power electronics industry. 2012

### Wide-bandgap Semiconductors: Application ranges

#### WBG MARKET SEGMENTATION AS A FUNCTION OF VOLTAGE RANGE

Current status and Yole's vision for 2020\*





#### Sources

Yole Developpement, ECPE Workshop 2016 G. Meneghesso, "Parasitic and Reliability issues in GaN-Based Transistors", CORPE Workshop 2018, Aalborg, Denmark

### Potential power devices for lower voltage (Eg. PV)

| Performances                              | GaN HEMT                                                                                            | Superjunction SI MOSFET                                                                                                                       | SIC MOSFET                                                                                                          |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------|
| Power Density                             | High                                                                                                | Moderate                                                                                                                                      | High                                                                                                                |
| Reliability                               | High                                                                                                | High                                                                                                                                          | Unknown                                                                                                             |
| Cost                                      | High                                                                                                | Low                                                                                                                                           | High                                                                                                                |
| Failure mode                              | Short circuit                                                                                       | Both short- and open circuit                                                                                                                  | Both short- and open circuit                                                                                        |
| Insulation to heat sink                   | Yes                                                                                                 | No                                                                                                                                            | No                                                                                                                  |
| Switching loss                            | Low                                                                                                 | Moderate                                                                                                                                      | Low                                                                                                                 |
| Conduction loss                           | Low                                                                                                 | Moderate                                                                                                                                      | Low                                                                                                                 |
| Thermal resistance                        | Moderate                                                                                            | Moderate                                                                                                                                      | Low                                                                                                                 |
| Cost factor                               | High                                                                                                | Low                                                                                                                                           | High                                                                                                                |
| Gate driver                               | Complex                                                                                             | Simple                                                                                                                                        | Moderate                                                                                                            |
| Major suppliers                           | EPC, Navitas, Transphorm,<br>Panasonic, GanSystems, NXP,<br>Texas Instruments, Infineon,<br>Fujitsu | Infineon, Renesas, Panasonic,<br>Mitsubishi Electric, Toshiba,<br>Hitachi, STMicrorlectronics, Bosch,<br>Sumitomo Electric, Raytheon,<br>CRRC | Wolfspeed, Rohm, Mitsubishi,<br>Infineon, Littelfuse, GE, Fuji,<br>GeneSiC, Microsemi, OnSemi,<br>USCi, GlobalPower |
| Voltage ratings in real power application | ≤ 650 V                                                                                             | ≤ 600 V                                                                                                                                       | ≤ 1700 V                                                                                                            |
| Max. current ratings                      | 90 A (100 V), 50 A (650 V)                                                                          | 20 A (600 V)                                                                                                                                  | 1200 A (1700 V)                                                                                                     |


## Potential power devices for wind power

| Performances                              | Si-IGBT module                      | Si-IGBT Press-pack       | SiC MOSFET module      |
|-------------------------------------------|-------------------------------------|--------------------------|------------------------|
| Power Density                             | Low                                 | High                     | Low                    |
| Reliability                               | Moderate                            | High                     | Unknown                |
| Cost                                      | Moderate                            | High                     | High                   |
| Failure mode                              | Open circuit                        | Short circuit            | Open circuit           |
| Insulation to heat sink                   | Yes                                 | No                       | Yes                    |
| Switching loss                            | Moderate                            | Large                    | Low                    |
| Conduction loss                           | Moderate                            | Moderate                 | Large                  |
| Thermal resistance                        | Large                               | Small                    | Moderate               |
| Cost factor                               | Moderate                            | High                     | High                   |
| Gate driver                               | Moderate                            | Moderate                 | Small                  |
| Major suppliers                           | Infineon, Semikron, Mitsubishi, ABB | Westcode, ABB            | Cree, Rohm, Mitsubishi |
| Voltage ratings in wind power application | 1.7 / 2.5 / 3.3 / 4.5 / 6.5 kV      | 2.5 / 4.5 / 5.2 / 6.5 kV | 1.2 / 1.7 / 10 kV      |
| Max. current ratings                      | 3.6 / 1.5/ 1.8 /1.5 / 1.0 kA        | 2.25 / 3 / 3 / 0.9 kA    | 0.8 / 1.2 / 0.02 kA    |



## **General Control for Wind Turbine System**

 $\checkmark$ 



✓ DC voltage control

#### 38

#### DC Chopper

Power quality



## **General Control Structure for PV Systems**



Control and Monitoring

#### Basic functions – all grid-tied inverters

- Grid current control
- DC voltage control
- Grid synchronization



## PV specific functions – common for PV inverters

- Maximum power point tracking MPPT
- ► Anti-Islanding (VDE0126, IEEE1574, etc.)
- Grid monitoring
- Plant monitoring
- Sun tracking (mechanical MPPT)

#### Ancillary support – in effectiveness

- Voltage control
- Fault ride-through
- Power quality
- ...

## **MPPT Algorithms**

| MPPT Methods                                         | Advantages                                                                                      | Disadvantages                                                                                                          |
|------------------------------------------------------|-------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Perturb & Observe (P&O) /<br>Incremental Conductance | <ul><li>Simple</li><li>Low computation</li><li>Generic</li></ul>                                | <ul> <li>Tradeoff beteween speed and accuracy</li> <li>Goes to the wrong way under fast changing conditions</li> </ul> |
| Constant Voltage (CV)                                | <ul><li>Much simple</li><li>No ripple due to perturbation</li></ul>                             | <ul> <li>Energy is wasted during Voc<br/>measurement</li> <li>Inaccuracy</li> </ul>                                    |
| Short-Current Pulse<br>(SCP, i.e., constant current) | <ul><li>Simple</li><li>No ripple due to perturbation</li></ul>                                  | <ul> <li>Extra swith needed for short-<br/>circuiting</li> <li>Inaccuracy</li> </ul>                                   |
| Ripple Correlation Control                           | <ul><li>Ripple amplitude provides the MPP information</li><li>Noneed for perturbation</li></ul> | <ul> <li>Tradeoff between efficiency loss<br/>due to MPPT or to the ripple</li> </ul>                                  |

#### P&O – the most commonly used MPPT algorithm!



#### **Implementation of MPPT Control**

Single-Stage System



• Double-Stage System (in the DC-DC converter)





Y. Yang, K. A. Kim, F. Blaabjerg, and A: Sangwongwanich, Advances in Grid-Connected Photovoltaic Power Conversion Systems, Woodhead Publishing, 2018.

## **Example of MPPT Control**

### For a boost optimizer:





Y. Yang, K. A. Kim, F. Blaabjerg, and A: Sangwongwanich, Advances in Grid-Connected Photovoltaic Power Conversion Systems, Woodhead Publishing, 2018.

## **Future Challenges and Discussions**



## **Increasing Energy Demand**



#### Worldwide Energy Demand Since 1970 and The Estimation till 2030

(Source: International Energy Agency (IEA), World energy outlook 2004 http://www.worldenergyoutlook.org/media/weowebsite/2008-1994/weo2004.pdf.)



## The Danish Plan to Reduce CO2



Danish prime minister Mette Frederiksen (Photo: News Oresund/Commons )



Under the agreement, the new government pledged to introduce binding decarbonization goals and strengthen its 2030 target to reduce emissions by **70%** below the 1990 level – the current target is 40%.



## **Electricity Generation and Consumption in DK**





## **Transition of Energy System**



(Source: Danish Energy Agency)

#### from Central to De-central Power Generation



(Source: Danish Energy Agency)



Source: http://electrical-engineering-portal.com

from large synchronous generators to more power electronic converters



Source: http://media.treenugger.cor

#### **Towards 100% Power Electronics Interfaced**

Integration to electric grid Power transmission Power distribution Power conversion Power control



Source: www.offshorewind.biz



## Wind Turbine Technologies



In the **1980S**, a wind turbine of 50 kW was considered large, while today's typical wind turbines are rated at 2–3 MW and design is now approaching **10 MW**. Much of the development for larger units was driven by the need for **lower cost of energy**, while some of the electric technology changes were imposed by performance improvements, especially in terms of grid connection.



#### A 400 MW off-shore Wind Power System in Denmark



# Anholt-DK (2016) – Ørsted



#### Wind Turbine Technologies



Bird's-eye view of the nacelle of a state of the multi-MW wind turbine, including electric generator and power electronics converters. (Courtesy of Vestas Wind Systems A/S.)



## **Grid-forming & Grid-feeding Systems (examples)**



- Voltage-source based inverter
- Control reference: voltage amp. & freq.





- Current-source based inverter
- Control reference: active & reactive power

## **Virtual Inertia Emulation in PMSG based Wind System**



Two virtual inertia solutions:

- 1) Virtual inertia control based on Ps in MSC controller;
- 2) Virtual inertia control based on Vdc in GSC controller;



## **Solar Energy**

Can be captured via two ways:

- Solar photovoltaic
- Concentrated solar power (CSP)





## **Solar Photovoltaic Technologies**



Grid-connected PV systems comprise a power electronics DC/DC converter, which ensures a maximum solar energy harvesting through a maximum power point tracking (MPPT) control, and a DC/AC converter for interconnection to the grid. PV systems have gained large popularity not only for multi-MW **utility-scale** power plants/farms but also as **rooftop installations** on commercial and residential buildings with ratings as small as hundreds of Watts, but typically in the kW range.



### **Solar Photovoltaic Technologies**



Rooftop-installed PV systems: (a) PV arrays with a total rating of 60 kW installed on the roof of Aalborghus High School in Denmark and (b) power electronic converters with the schematic are installed within the building and are connected to the AC grid.



## 1500-V DC PV System

#### Becoming the mainstream solution!



- Decreased requirement of the balance of system (e.g., combiner boxes, DC wiring, and converters) and Less installation efforts
- Contributes to reduced overall system cost and increased efficiency
- More energy production and lower cost of energy
- Electric safety and potential induced degradation
  - Converter redesign higher rating power devices



## 1500-V DC PV System

Becoming the mainstream solution!

#### **ABB MW Solution**





#### Sungrow five-level topology



https://www.pv-tech.org/products/abb-launches-high-power-1500-vdc-central-inverter-for-harsh-conditions https://www.pv-tech.org/products/sungrows-1500vdc-sg125hv-string-inverter-enables-5mw-pv-power-block-designs

### **CSP** Technologies



Solar energy can be captured by **Concentrating sunlight** using **reflective Components** to receivers, which can carry or transfer the generated heat. Then, the heat can **drive an engine** that is further connected to an electrical generator to produce electricity; or the heat can be used to **power thermal–chemical reactions**.



### **CSP** Technologies



Central solar tower as a receiver for heat generating



#### **CSP** Technologies



Sunlight concentrated by a parabolic trough line structure



#### **CSP Example 1**



On the left, phase 1 of the Noor CSP plant is generating energy. On the right, phase 2 will be completed in 2017 and phase 3 in 2018.



https://www.cio.com/article/3031898/worlds-largest-solar-plant-goes-live-will-provide-power-for-11m-people.html

#### **CSP Example 2**



Close up view of parabolic trough and heat collector



http://theoildrum.com/node/2583

### **Fuel Cell Systems**



#### Fuel cell systems have been **expected for many years** to increase their presence in applications over a wide range of power ratings. The typically low-temperature **proton exchange membrane (PEM)** technology and the higher-temperature **Solid oxide fuel cells (SOFC)** type can be applied for large power supplies, with some demonstrators being completed for uninterruptible power supply (UPS) systems.



#### **Fuel Cell Systems**



Low-temperature PEM fuel cell setup at Aalborg University with approximate 1.2 kW electrical capacity (28 cells each of 43 W) and hydrogen as fuel.



## **Wave Energy**



More than 70% of the earth surface is covered by water, making oceans and seas a

## potentially huge energy resource, which is yet largely untapped. In the

example solution, the movement of waves engages a mechanical transmission that is coupled to an electric generator.

- Very low speeds and large power variations require special solutions and may result in relatively reduced conversion efficiencies.
- Long-term reliability under very harsh environmental conditions and survivability during storms are major challenges that drive up the investment, operation and maintenance efforts, and ultimately the final cost of energy for such system.



#### **Wave Energy**



Wave Star wave energy generator located at the Hanstholm test site in Denmark. (Courtesy of Wave Star Company.)



## **Energy Storage Technologies**

Matching the inherent **weather-dependent variability** of renewable energy generation with the load demand in modern power systems and the smart grid remains a major challenge. This general problem benefits of great attention and sustained research programs with emphasis on both **power electronics** and **energy storage** devices and systems.





## **Energy Storage – Electrolyzer**



System for producing hydrogen using an electrolyzer supplied with electricity from the AC electrical grid or renewable energy sources. The hydrogen can be stored under pressure and/or used with fuel cells.



## **Energy Storage – Batteries**



System using batteries for storing electric energy from the AC electrical grid or renewable energy sources. Power electronics control ensures bidirectional energy flow.



#### **Energy Storage Examples**



Li-on Batteries for PV Applications Redox Flow Batteries for PV Applications



## **Renewable energy systems – Summary**

- Solar power fully competitive with fossil today
- Large pressure on reducing CoE for wind
- > WBG might reduce converter technology size and cost !?
- > All types of PV inverters will evolve but not major cost in PV..
- Grid codes will constantly change improve technology
- More intelligence into the control of renewables
- Grid-feeding/Grid forming how to do in large scale systems ?
- Storage is coming into system solutions
- Black start of systems (Inrush currents how to do it)
- Protection coordination in future grid ?
- Stability of PE-Dominated grid
- > Other energy carriers will be a part of large scale system balance
- Renewables 100 % competitive in 10 Years..... Power electronics is enabling



#### Acknowledgment

Prof. Frede Blaabjerg, Dr. Xiongfei Wang, Dr. Dao Zhou, Dr. Tomislav Dragicevic, Dr. Huai Wang

from Department of Energy Technology Aalborg University

Look at

<u>www.et.aau.dk</u> <u>www.corpe.et.aau.dk</u> <u>www.harmony.et.aau.dk</u> <u>www.repeps.et.aau.dk</u>




## Books available





## Books available





## Thank you!



AALBORG UNIVERSITY

DENMARK