Control and Stability of DFIG-based Wind Turbine Systsm

Chao Wu

Postdoc Email: <u>cwu@et.aau.dk</u>

Outline

- 1. Research background
- 2. Stability analysis of DFIG-AC system
- 3. Stability enhancement of DFIG-AC system
- 4. Control of DFIG-DC system
- 5. Conclusion

• Reported statility issues of DFIG based wind farm

DFIG system connected to the series compensated weak network.

Wind farms and the series-compensated system [2].

2009, South Texas^[1], 20 Hz, DFIG wind farm.

[1] J. Adams, C. Carter and S. Huang, "ERCOT experience with Sub-synchronous Control Interaction and proposed remediation," *PES T&D* 2012, Orlando, FL, 2012, pp. 1-5

[2] L. Wang, et al, "Investigation of SSR in practical DFIG-based wind farms connected to a series-compensated power system," *IEEE Trans. Power Systems*, vol. 30, no. 5, pp. 2772-2779, Sept. 2015

• Overview of stability analysis methods

[1] J. Sun, "Small-Signal Methods for AC Distributed Power Systems–A Review," in IEEE Transactions on Power Electronics, vol. 24, no. 11, pp. 2545-2554, Nov. 2009.

[2] J. Sun, etc. Renewable Energy Transmission by HVDC Across The Continent: System Challenges and Opportunities, CSEE JOURNAL OF POWER AND ENERGY SYSTEMS, VOL. 3, NO. 4, DECEMBER 2017

Impedance model of single DFIG

Topology of DFIG connected to three phase AC grid.

WinGrid

Equivalent circuit of DFIG in the synchronous dq frame.

The single DFIG is a symmetrical plant, which shows the inductive-resistive characteristic in the high frequency.

Impedance model of RSC+DFIG

Topology of DFIG connected to three phase AC grid.

Model of DFIG in synchronous dq frame.

Model of RSC+DFIG in dq frame without considering PLL effect.

$$G_{cdq}(s) = \frac{k_{pi}s + k_{ii}}{s} \qquad G_{ddq}(s) = e^{-T_d s}$$
$$I_{sdq} = Y_{cdq}U_{sdq} - G_{ircdq}(s)I_{rdq}^{ref}$$
$$Y_{cdq} = G_{1dq}(s)/L_s + \frac{L_m}{L_s}\frac{G_{1dq}(s)G_{2dq}(s)G_{pdq}(s)}{1 + G_{cdq}(s)G_{ddq}(s)G_{pdq}(s)}$$
$$Y_{c\alpha\beta} = Y_{cdq}(s - j\omega_1)$$

The RSC+DFIG is still a symmetrical plant, which can be analyzed as SISO system.

Impedance model considering PLL effect

□ The small signal model of SRF-PLL is asymmetrical and the complex vector model can not be applied directly.

Impedance model considering PLL effect

Topology of DFIG connected to three phase AC grid.

Effect on current Park transformation

$$\boldsymbol{I}_{rdq}^{c} = e^{-j(\theta_{PLL} - \theta_{r})} \boldsymbol{I}_{r\alpha\beta} = \left(\boldsymbol{I}_{rdq0} + \Delta \boldsymbol{I}_{rdq}\right) e^{-j\Delta\theta_{PLL}}$$
$$\approx \left(\boldsymbol{I}_{rdq0} + \Delta \boldsymbol{I}_{rdq}\right) \left(1 - j\Delta\theta\right) = \boldsymbol{I}_{rdq0} + \Delta \boldsymbol{I}_{rdq} - j\boldsymbol{I}_{rdq0}\Delta\theta_{PLL}$$

$$\Delta \boldsymbol{I}_{rdq}^{c} = -j\boldsymbol{I}_{rdq0}\Delta\theta + \Delta \boldsymbol{I}_{rdq} = -\boldsymbol{G}_{PLL}^{i}\left(s\right)\Delta\boldsymbol{U}_{dq} + \Delta \boldsymbol{I}_{rdq}$$
$$\boldsymbol{G}_{PLL}^{i}\left(s\right) = \begin{bmatrix} 0 & -\boldsymbol{I}_{rq0}\boldsymbol{H}_{PLL}\left(s\right) \\ 0 & \boldsymbol{I}_{rd0}\boldsymbol{H}_{PLL}\left(s\right) \end{bmatrix}$$

Conventional SRF-PLL.

Effect on voltage Inverse Park transformation

$$\boldsymbol{U}_{rdq}^{c} = e^{j(\theta_{PLL} - \theta_{r})} \boldsymbol{U}_{ra\beta} = \left(\boldsymbol{U}_{rdq0} + \Delta \boldsymbol{U}_{rdq}\right) e^{j\Delta\theta_{PLL}}$$

$$\approx \left(\boldsymbol{U}_{rdq0} + \Delta \boldsymbol{U}_{rdq}\right) \left(1 + j\Delta\theta_{PLL}\right) = \boldsymbol{U}_{rdq0} + \Delta \boldsymbol{U}_{rdq} + j\boldsymbol{U}_{rdq0}\Delta\theta_{PLL}$$

$$\Delta \boldsymbol{U}_{rdq}^{c} = j\boldsymbol{U}_{rdq0}\Delta\theta + \Delta \boldsymbol{U}_{rdq} = \boldsymbol{G}_{PLL}^{d}\left(s\right)\Delta\boldsymbol{U}_{sdq} + \Delta \boldsymbol{U}_{rdq}$$

$$\boldsymbol{G}_{PLL}^{d}\left(s\right) = \begin{bmatrix} 0 & -\boldsymbol{U}_{rq0}\boldsymbol{H}_{PLL}\left(s\right) \\ 0 & \boldsymbol{U}_{rd0}\boldsymbol{H}_{PLL}\left(s\right) \end{bmatrix}$$

□ The small signal model of SRF-PLL is asymmetrical and the complex vector model can not be applied directly.

Impedance model considering PLL effect

Topology of DFIG connected to three phase AC grid.

Model of RSC+DFIG in dq frame without considering PLL effect.

Model of RSC+DFIG in dq frame considering PLL effect.

$$I_{sdq} = Y_{cpdq} U_{sdq} - G_{ircpdq} (s) I_{rdq}^{ref}$$

$$Y_{cpdq} = G_{1dq} (s) / L_s + \frac{L_m}{L_s} \frac{G_{pdq} (s) G_{2dq} (s) G_{1dq} (s)}{1 + G_{cdq} (s) G_{ddq} (s) G_{pdq} (s)}$$

$$- \frac{L_m}{L_s} \frac{G_{pdq} (s) G_{ddq} (s) (G_{cdq} (s) G_{pll}^i (s) + G_{pll}^d (s))}{1 + G_{cdq} (s) G_{ddq} (s) G_{pdq} (s)}$$

$$Y_{cpdq} = \begin{bmatrix} Y_{cp11} & Y_{cp12} \\ 0 & Y_{cp22} \end{bmatrix}$$

The RSC+DFIG becomes asymmetrical plant due to the PLL effect, which should be analyzed by MIMO method.

🚺 🦓 WinGrid

Relationship between different impedance models

Relationship between different impedance models

If the impedance is asymmetric, how to transfer the dq scalar impedance to sequence impedance?

$$\begin{bmatrix} U_{d}(s) \\ U_{q}(s) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix} \begin{bmatrix} U_{p}(s) \\ U_{n}(s) \end{bmatrix} \quad \begin{bmatrix} U_{p}(s) \\ U_{n}(s) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \begin{bmatrix} U_{d}(s) \\ U_{q}(s) \end{bmatrix} \quad \begin{bmatrix} I_{d}(s) \\ I_{q}(s) \end{bmatrix} = \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix} \begin{bmatrix} I_{p}(s) \\ I_{n}(s) \end{bmatrix}$$
$$\begin{bmatrix} U_{p}(s) \\ U_{n}(s) \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & j \\ 1 & -j \end{bmatrix} \begin{bmatrix} Z_{dd} & Z_{dq} \\ Z_{qd} & Z_{qq} \end{bmatrix} \begin{bmatrix} 1 & 1 \\ -j & j \end{bmatrix} \begin{bmatrix} I_{p}(s) \\ I_{n}(s) \end{bmatrix} \quad \bigoplus \quad \begin{bmatrix} U_{p}(s) \\ U_{n}(s) \end{bmatrix} = \begin{bmatrix} Z_{dd} & Z_{dq} \\ Z_{qd} & Z_{qq} \end{bmatrix} \begin{bmatrix} I_{p}(s) \\ I_{n}(s) \end{bmatrix}$$
$$dq \text{ sequence impedance model}$$

Transformation from dq sequence to phase sequence model

$$\begin{bmatrix} \boldsymbol{U}_{p}\left(s\right) \\ \boldsymbol{U}_{n}\left(s\right) \end{bmatrix} = \begin{bmatrix} \boldsymbol{Z}_{dd} & \boldsymbol{Z}_{dq} \\ \boldsymbol{Z}_{qd} & \boldsymbol{Z}_{qq} \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{p}\left(s\right) \\ \boldsymbol{I}_{n}\left(s\right) \end{bmatrix} \xrightarrow{\boldsymbol{U}_{p} = e^{-j\theta}\boldsymbol{U}_{\alpha\beta}, \boldsymbol{U}_{n} = e^{j\theta}\boldsymbol{U}_{\alpha\beta}^{*}}_{\boldsymbol{I}_{p} = e^{-j\theta}\boldsymbol{I}_{\alpha\beta}, \boldsymbol{I}_{n} = e^{j\theta}\boldsymbol{I}_{\alpha\beta}^{*}} \begin{bmatrix} \boldsymbol{U}_{\alpha\beta} \\ e^{j2\theta}\boldsymbol{U}_{\alpha\beta}^{*} \end{bmatrix} = \begin{bmatrix} \boldsymbol{Z}_{dd}\left(s - j\omega_{1}\right) & \boldsymbol{Z}_{dq}\left(s - j\omega_{1}\right) \\ \boldsymbol{Z}_{qd}\left(s - j\omega_{1}\right) & \boldsymbol{Z}_{qq}\left(s - j\omega_{1}\right) \end{bmatrix} \begin{bmatrix} \boldsymbol{I}_{\alpha\beta} \\ e^{j2\theta}\boldsymbol{I}_{\alpha\beta}^{*} \end{bmatrix}$$

A. Rygg, M. Molinas, C. Zhang, and X. Cai, "A modified sequence domain impedance definition and its equivalence to the *dq*-domain impedance definition for the stability analysis of ac power electronic systems," *IEEE J. Emerg. Sel. Topics Power Electron.*, vol. 4, no. 4, pp. 1382–1396, Dec.2016.

Validation of impedance model

Topology of DFIG connected to three phase AC grid.

Frequency scan results

$$Z_h = \frac{U_{ha}}{I_{ha}}$$

Table Parameters	of	DFIG	used	in	simulation
-------------------------	----	------	------	----	------------

Parameter	Symbol	Value
Rated Voltage	U_s	690 V
Rated Power	$P_{\rm s}$	1.5 MW
Rtaed Frequency	f_1	50 Hz
Pole Pairs	n_p	2
Dc-link Voltage	V_{dc}	1150 V
Stator Leakage	L_{ls}	0.060 mH
Rotor Leakage	L_{lr}	0.083 mH
Mutual Inductance	L_{ms}	2.95 mH
Stator Resistance	R_s	0.0024 Ω
Rotor Resistance	R_r	0.0020 Ω
Sampling Period	T_s	0.1 ms
Turns Ratio	K _e	0.33
Base Inductance	L _{base}	1mH

Control parameters

Validation of admittance model

Model validation by frequency scan, the solid lines are calculated by the admittance matrix, the dotted lines are calculated by the simplified admittance matrix, the points are obtained by simulation results. Red represents ω_r =40Hz, green represents ω_r =50Hz, red represents ω_r =60Hz.

Generalized Nyquist Criterion (GNC)

Grid impedance matrix $Z_{g} = \begin{bmatrix} sL_{g} & 0\\ 0 & (s-j2\omega_{1})L_{g} \end{bmatrix}$ DFIG impedance matrix $Y_{DFIG} = \begin{bmatrix} Y_{DFIG11} & Y_{DFIG12}\\ Y_{DFIG21} & Y_{DFIG22} \end{bmatrix}$

Current injected to grid

$$\boldsymbol{I}_{g} = \left(\boldsymbol{I}_{s}^{ref} - \boldsymbol{Y}_{DFIG}\boldsymbol{U}_{g}\right) \cdot \frac{1}{\boldsymbol{I} + \boldsymbol{Y}_{DFIG} \cdot \boldsymbol{Z}_{g}}$$

To guarantee the stability of the system, all the poles of the denominator should be on the left half plan. In order to avoid the complicated process of solving the characteristic equation, the GNC is used.

$$\mathsf{GNC} \qquad \det \left(\boldsymbol{I} + \boldsymbol{Y}_{DFIG} \cdot \boldsymbol{Z}_{g} \right) = 0$$

The two eigenvalues of the matrix can be used for assessing the stability by checking whether the eigenvalues will encircle (-1,0).

Generalized Nyquist Criterion (GNC)

Grid impedance matrix $\mathbf{Z}_{g} = \begin{bmatrix} sL_{g} & 0\\ 0 & (s-j2\omega_{1})L_{g} \end{bmatrix}$ GNC $\det(\mathbf{I} + \mathbf{Y}_{DFIG} \cdot \mathbf{Z}_{g}) = 0$

Control delay effect

Remarks: The locus of eigenvalue λ_1 is always located at the right side of eigenvalue λ_2 , which cannot encircle the (-1,0) point. Thus, the locus of eigenvalue λ_1 will be omitted in order to make the Nyquist diagram more simple and clear in the next Nyquist diagrams

WinGrid

Generalized Nyquist Criterion (GNC)

Grid impedance matrix $\mathbf{Z}_{g} = \begin{bmatrix} sL_{g} & 0\\ 0 & (s-j2\omega_{1})L_{g} \end{bmatrix}$ GNC $\det(\mathbf{I} + \mathbf{Y}_{DFIG} \cdot \mathbf{Z}_{g}) = 0$

• PLL parameters

WinGrid

Nyquist diagram with different PLL parameters

Remarks: High PLL bandwidth will cause instability of DFIG system under weak grid

Generalized Nyquist Criterion (GNC)

Grid impedance matrix $\mathbf{Z}_{g} = \begin{bmatrix} sL_{g} & 0\\ 0 & (s-j2\omega_{1})L_{g} \end{bmatrix}$

$$\mathsf{GNC} \qquad \det \left(\boldsymbol{I} + \boldsymbol{Y}_{DFIG} \cdot \boldsymbol{Z}_{g} \right) = 0$$

Rotor speed

WinGrid

Generalized nyquist diagram with different rotor speed.

Remarks: rotor speed also has effect on the system stabilty

Simulation result of DFIG with rotor speed variation.

Conclusion

- The conventional SRF-PLL will introduce a asymmetric matrix to the impedance, which will make DFIG system more complicated.
- The dq impedance and sequence impedance can be converted to each other, which are essentially equivalent.
- □ The impedance results would be wrong without considering the PLL effect, which might cause a wrong stability assessment.
- The Generalized Nyquist Criterion can be applied for accurate stability analysis. However, it is only based on the figure and difficult to guide the parameter design.

Small signal of conventional SRF-PLL

The small signal model of SRF-PLL is asymmetrical and the complex vector model can not be applied directly.

Source: D. Yang, X. Wang, F. Blaabjerg, etc, "Complex-Vector PLL for Enhanced Synchronization with Weak Power Grids," 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, 2018, pp. 1-6.

The small signal of angle θ is related to small signal of voltage vector, which means the small siganl model is symmetrical and the complex vector model can be applied.

Source: D. Yang, X. Wang, F. Liu, K. Xin, Y. Liu and F. Blaabjerg, "Symmetrical PLL for SISO Impedance Modeling and Enhanced Stability in Weak Grids," in IEEE Transactions on Power Electronics, vol. 35, no. 2, pp. 1473-1483, Feb. 2020.

🔍 📣 🥪 WinGrid

WinGrid Mini-course

| 2021.05.17 | SLIDE 22

Small signal of symmetrical PLL

Source: C. Wu, B. Hu, H. Nian, F.Blaabjerg, "Eliminating Frequency Coupling of DFIG System Using a Complex Vector PLL", APEC, 2020.

Validation of admittance model

• Stability analysis of DFIG based on symmetrical PLL

Impedance model analysis

DFIG impedance model based on symmetrical PLL

WinGrid

Amplitude-frequency characteristic curves of impedance subsystem

Block diagram of DFIG subsystem impedance.

$$Z_{\text{DFIG}} = \left(1/Z_0 + 1/Z_{pnu} + 1/Z_{pni}\right)^{-1}$$

Impedance model analysis

DFIG impedance model based on symmetrical PLL

□ *Z_{pni}* will introduce a negative resistance in this frequency range, which is the main reason that might cause instability under weak grid.

Phase-frequency characteristic curves of DFIG impedance subsystem

Impedance reshaping control strategy

DFIG impedance model based on symmetrical PLL

Virtual impedance implemented in control frame

Block diagram of DFIG impedance based on the virtual impedance

Impedance reshaping control strategy

DFIG impedance model based on symmetrical PLL

Virtual impedance implemented in control frame

Control diagram of the proposed impedance reshaping control strategy in dq-domain

| 2021.05.17 | SLIDE **29**

Experimental validations

Experimental results of DFIG system with proposed control strategy

WinGrid

Experimental results of adaptability of the proposed control strategy for resonance frequency shifts due to the SCR changes

- With the proposed impedance reshaping method, the negative resistance can be counteracted and the stability can be improved.
- Frequency coupling and system stability are two seperate issues, eliminating frequency coupling does not improve the system stability.

Conclusion

- The frequency coupling phenomenon of DFIG system caused PLL can be eliminated by using a symmetrical PLL.
- □ The sequence impedance model of DFIG system can easily be obtained based on complex transfer function, since it is simplified as a SISO system with the symmetrical PLL.

□ SISO impedance reshaping method can be implemented to enhance the stability of DFIG system under the weak grid condition.

[1] C. Wu, B. Hu, H. Nian, F.Blaabjerg, "Eliminating Frequency Coupling of DFIG System Using a Complex Vector PLL", APEC, 2020.
 [2] H. Nian, B. Hu, C. Wu, L. Chen, Y. Xu and F. Blaabjerg, "Analysis and Reshaping on Impedance Characteristic of DFIG System based on Symmetrical PLL," in IEEE Transactions on Power Electronics.doi: 10.1109/TPEL.2020.2982946

Control of DFIG-DC system

The significance of dc grid connection for renewable energy

Objectives: Build good performance、high efficiency、low cost DFIG-DC system

[1] Iacchetti, M.F., G.D. Marques and R. Perini, Torque Ripple Reduction in a DFIG-DC System by Resonant Current Controllers. *IEEE Transactions on Power Electronics*, 2015. 30(8): p. 4244-4254.

[2] Marques, G.D. and M.F. Iacchetti, Stator Frequency Regulation in a Field-Oriented Controlled DFIG Connected to a DC Link. *IEEE Transactions on Industrial Electronics*, 2014. 61(11): p. 5930-5939.

• Operation mode of diode bridge rectifier

Conduction mode : the magnitude ratio between ac voltage and dc voltage

Key property: The product of stator frequency and flux is a constant value

• Indirect stator frequency control based on stator flux magnitude

[1] Nian Heng, **Wu Chao**, Cheng Peng. Direct resonant control strategy for torque ripple mitigation of DFIG connected to DC link through diode rectifier on stator[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6936-6945.

WinGrid Mini-course

WinGrid

• Indirect stator frequency control based on stator flux magnitude

Drawbacks:

1.Dependent on the ratio between stator and mutual inductance

2.Control accuracy of stator frequency is dependent on stator flux accuracy

Heng Nian, **Chao Wu**, Peng Cheng. Direct resonant control strategy for torque ripple mitigation of DFIG connected to DC link through diode rectifier on stator[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6936-6945.

Stator Stator 0.5 flux voltage 0 -0.5 0.01 0 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 t/sWaveforms of stator voltage and flux I_{rabc} ω_{s} I_{rd} abc. $heta_{\underline{slip}}$ I_{rq} dq ω_{b} θ_{s} اعر k;/s sabc abc. Α k_{p} Phase sd Loop filter VCO detector

• Direct stator frequency control method

Stator flux PLL

Obtaining stator frequency and staor flux angle simultaneously

🛓 🔬 WinGrid

WinGrid Mini-course

 θ_{s}

Direct stator frequency control method

Cons: 1.The accuracy is dependent on ratio between stator and mutual inductance

Chao Wu, Heng Nian. An improved repetitive control of DFIG-DC system for torque ripple suppression[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7634-7644.

Acquiring stator flux angle

Indirect stator frequency control based on stator flux angle

Obtaining Stator flux angle based on SOGI can eliminate the bad effect of dc offset

• Experimental setup

Parameters	Value	Parameters	Value
Rated power	1.0 kW	Rated voltage	110 V
Rated frequency	50 Hz	DC voltage	140 V
DC capacitance	780 µF	R_s	1.01 Ω
R_r	$0.88~\Omega$	L_m	87.5 mH
L_{σ}	5.6 mH		5.6 mH

Schematic diagram of the experiment system

Experimental setup

Experimental results of different frequency control methods

Experimental results of different frequency control methods

Staor flux magnitude control with power variations

Direct stator frequency control with power varitaions

- Stator flux magnitude control is affected by power change;
- Stator frequency control is not affected by power change;

Experimental results of different frequency control methods

Performance comparison of different frequency control methods

	Stator flux magnitude control	Direct stator frequency control	Stator flux angle control
Stator flux model	Current model	Current model	Voltage model
Integral block	No	No	Yes
Ratio between stator and mutual inductance	Yes	Yes	Νο
Sampling offset effect	Yes	Yes	No
Power effect	Yes	Yes	No

- The sampling offset can be eliminated by SOGI based stator flux angle control;
- Stator flux angle control is not dependent on the ratio between stator and mutual inductance;

Torque ripple analysis under slightly distorted stator voltage

Stator voltage
$$U_{sdq} = U_{sdq}^{1} + U_{sdq}^{5}e^{-j6\omega_{1}t} + U_{sdq}^{7}e^{j6\omega_{1}t}$$
 Diode bridge
2/3/2 mode
Stator flux $\Psi_{sdq} = \frac{U_{sdq}^{1}}{j\omega_{1}} - \frac{U_{sdq}^{5}}{j5\omega_{1}}e^{-j6\omega_{1}t} + \frac{U_{sdq}^{7}}{j7\omega_{1}}e^{j6\omega_{1}t}$
Stator current $I_{sdq} = I_{sdq}^{1} - \frac{U_{sdq}^{5}}{j\sigma L_{s}5\omega_{1}}e^{-j6\omega_{1}t} + \frac{U_{sdq}^{7}}{j\sigma L_{s}7\omega_{1}}e^{j6\omega_{1}t}$
Torque $T_{e} = \operatorname{Re}\left(j\Psi_{sdq}I_{sdq}\right) = L_{m}\left(I_{sq}I_{rd} - I_{sd}I_{rq}\right)$

Torque ripple
$$T_{e}^{6} = \operatorname{Re}\left[(U_{sdq}^{1}I_{sdq}^{7} - \frac{U_{sdq}^{5}I_{sdq}^{1}}{5})e^{-j6\omega_{t}t} + (U_{sdq}^{1}I_{sdq}^{5} + \frac{U_{sdq}^{7}I_{sdq}^{1}}{7})e^{j6\omega_{t}t}\right]$$

Torque ripple manily consist of 6th order harmonic—resonant controller

• Direct resonant control under slightly distorted stator voltage

• Experimental results of direct resonant control method

Direct resonant control can mitigate torque ripple effectively

Nian Heng, **Wu Chao**, Cheng Peng. Direct resonant control strategy for torque ripple mitigation of DFIG connected to DC link through diode rectifier on stator[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6936-6945.

Experimental results of direct resonant control method

Step response of torque change

Rotor speed change from 800rpm to 1200rpm

Direct resonant control can reduce torque ripple in the dynamic process

Nian Heng, Wu Chao, Cheng Peng. Direct resonant control strategy for torque ripple mitigation of DFIG connected to DC link through diode rectifier on stator[J]. IEEE Transactions on Power Electronics, 2017, 32(9): 6936-6945.

Torque ripple analysis under highly distorted stator voltage

Stator voltage
$$U_{sa}(t) = \frac{2}{\pi} V_{dc} \left(\sin \omega_{1} t + \sum_{n=1}^{\infty} \left(\frac{\sin (6n-1)\omega_{1} t}{6n-1} + \frac{\sin (6n+1)\omega_{1} t}{6n+1} \right) \right)$$
$$U_{sdq} = U_{sdq+}^{+} + \sum_{n=1}^{\infty} \left(U_{sdq(6n-1)-}^{(6n-1)-} e^{-j6n\theta_{1}} + U_{sdq(6n+1)+}^{(6n+1)+} e^{j6n\theta_{1}} \right)$$
$$Diode bridge 3/3 mode$$
$$Stator flux \qquad \Psi_{sdq} = \Psi_{sdq+}^{+} + \sum_{n=1}^{\infty} \left(\Psi_{sdq(6n-1)-}^{(6n-1)-} e^{-j6n\theta_{1}} + \Psi_{sdq(6n+1)+}^{(6n+1)+} e^{j6n\theta_{1}} \right)$$
$$Stator current \qquad I_{sdq} = I_{sdq+}^{+} + \sum_{n=1}^{\infty} \left(I_{sdq(6n-1)-}^{(6n-1)-} e^{-j6n\theta_{1}} + I_{sdq(6n+1)+}^{(6n+1)+} e^{j6n\theta_{1}} \right)$$
$$Torque \qquad T_{e} = \operatorname{Re}\left(j\Psi_{sdq} I_{sdq} \right) = L_{n} \left(I_{sq} I_{n} - I_{sd} I_{nq} \right) = T_{e0} + \sum_{n=1}^{\infty} T_{e6n}^{-6n}$$
$$Torque ripple \qquad T_{e6n} = R_{e} \left[\left(U_{sdq+}^{(6n+1)+} - \frac{U_{sdq(6n+1)-}^{(6n-1)-} I_{sdq+}^{+}}{6n-1} \right) e^{-j6n\theta_{1}} + \left(U_{sdq+}^{+} I_{sdq(6n-1)-}^{-6n-1} + \frac{U_{sdq(6n+1)+}^{(n-1)+} I_{sdq}^{+}}{6n+1} \right) e^{j6n\theta_{1}} \right]$$

Controller should have multi-resonant frequency—repetitive controller

Design of improved repetitive controller

Conventional repetitive controller (CRC)
$$G_{CRC}(s) = \frac{k_{RC}e^{-T_0s}}{1 - e^{-T_0s}}$$

Expand expression $G_{CRC}(s) = -\frac{k_{RC}}{2} + \frac{k_{RC}}{T_0s} + \frac{2k_{RC}}{T_0}\sum_{n=1}^{\infty} \frac{s}{s^2 + (n\omega_0)^2}$
Without bandwidth

Considering bandwidth

$$G_{BRC}(s) = \frac{k_{RC} Q e^{-T_0 s}}{1 - Q e^{-T_0 s}}$$

Design of improved repetitive controller

Discretization
$$G_{BRC}(z) = \frac{k_{RC}Qz^{-N}}{1-Qz^{-N}}$$
 $N = f_s/f_0$
N is not integer? $z^{-N} = z^{-N_i-F}$ How to deal with fractional delay?

100

Frequency (Hz) Bode diagram of Lagrange-interpolation-based FIR filter with n=1,2,3

0.2 0

45 0

WinGrid

Phase (deg) -45 -90 -135 -180 10 Bode Diagram

n=1

1000

n=3

WinGrid Mini-course

$$z^{-1/3} \approx 0.5556 + 0.5556z^{-1} - 0.1111z^{-2} = F(z)$$

Fractional repetitive controller with bandwidth in the discrete domain

$$G_{BRC}(z) = \frac{k_{RC}Qz^{-N_{i}}F(z)}{1 - Qz^{-N_{i}}F(z)}$$

2021.05.17 | SLIDE 58

Design of improved repetitive controller

🖉 WinGrid

- Improved RC has bandwidth and can deal with fractional delay
- Improved RC can deal with the dc offset, which can also be applied in direct resonant control

• Experimental results with improved repetitive controller

Improved repetitive controller can suppress the torque ripples

Wu Chao, Nian Heng. An improved repetitive control of DFIG-DC system for torque ripple suppression[J]. IEEE Transactions on Power Electronics, 2018, 33(9): 7634-7644.

Stator frequency variation for efficiency improvement

[1] Marques G D, Iacchetti M F. Field-weakening control for efficiency optimization in a DFIG connected to a DC-Link[J]. IEEE Transactions on Industrial Electronics, 2016. 63(6): 3409-3419.

Design of adaptive repetitive controller

Adaptitive repetitive controller (ARC) $G_{ARC}(z) = k_r \frac{z^{-N_r} \sum_{k=0}^{\infty} A_k z^{-k} Q(z)}{1 - z^{-N_r} \sum_{k=0}^{\infty} A_k z^{-k} Q(z)} G_f(z)$

Output of ARC

$$\boldsymbol{U}_{rdq}^{ARC} = j \frac{z^{-N_i} \sum_{k=0}^{2} A_k z^{-k} Q(z)}{1 - z^{-N_i} \sum_{k=0}^{2} A_k z^{-k} Q(z)} G_f(z) (0 - T_e)$$

Rotor voltage reference $U_{rda}^* = U_{rda}^{PI} - U_{rda}^{ARC} + j\sigma L_r \omega_{sl} I_{rda}$

Chao Wu, Heng Nian, Bo Pang, Peng Cheng. Adaptive repetitive control of DFIG-DC system considering stator frequency variation[J]. IEEE Transactions on Power Electronics, 2019, 34(4): 3302-3312.

Wingrid

Experimental results with adaptive repetitive controller (ARC)

Efficiency optimization of DFIG-DC system

Harmonic current analysis under distorted stator voltage

Harmonic current analysis under distorted stator voltage

Harmonic current circuit

Simplified harmonic current circuit

When rotor side without injecting harmonic voltage, stator and rotor harmonic current

$$\boldsymbol{I}_{sh} = \frac{\boldsymbol{U}_{sh}}{j\sigma L_s h\omega_1}, \boldsymbol{I}_{rh} = \frac{L_m}{L_r} \frac{\boldsymbol{U}_{sh}}{j\sigma L_s h\omega_1}$$

Where $\sigma = 1 - L_m^2 / L_s L_r$ leakage coefficient, *h* is harmonic order, $\omega_1 = 100\pi$ rad/s is stator fundamental frequency

$$I_{shtot} = \frac{\left|\boldsymbol{U}_{s1}\right|}{j\sigma L_{s}\omega_{1}} \sqrt{\sum_{n=1}^{\infty} \left(\frac{1}{\left(6n-1\right)^{4}} + \frac{1}{\left(6n+1\right)^{4}}\right)}$$

Total stator harmonic currents
$$I_{rhtot} = \frac{L_{m}}{L_{r}} \frac{\left|\boldsymbol{U}_{s1}\right|}{j\sigma L_{s}\omega_{1}} \sqrt{\sum_{n=1}^{\infty} \left(\frac{1}{\left(6n-1\right)^{4}} + \frac{1}{\left(6n+1\right)^{4}}\right)}$$

Total rotor harmonic currents

Harmonic current analysis under distorted stator voltage

Stator sinusoidal current control strategy

Stator harmonic current can be eliminated with appropriate rotor harmonic voltage injection

Stator sinusoidal current control strategy

Chao Wu, Heng Nian. Sinusoidal current operation of DFIG-DC system without stator voltage sensors[J]. IEEE Transactions on Industrial Electronics, 2018, 65(8): 6250-6258.

U

Experimental results of stator sinusoidal current control strategy

Experimental results of stator sinusoidal current control strategy

Stator voltage feedforward works well during dynamic process

Harmonic current analysis with direct torque resonant control

Stator voltage is step wave, torque can be expressed as:

$$T_{e} = \frac{L_{m}}{L} \left(I_{rd} \psi_{sq} - I_{rq} \psi_{sd} \right) = \left(I_{rd0} + \sum_{n=1}^{\infty} I_{rd6n} \right) \left(\psi_{sq0} + \sum_{n=1}^{\infty} \psi_{sq6n} \right) - \left(I_{rq0} + \sum_{n=1}^{\infty} I_{rq6n} \right) \left(\psi_{sd0} + \sum_{n=1}^{\infty} \psi_{sd6n} \right)$$

Subscript 0 represents dc component, subscript 6*n* represents harmonic component

Conclusion: torque ripple is only determined by q-axis harmonic current

Double-axis direct resonant control strategy

Relationship between stator and rotor harmonic current :

q-axis(active power axis)for suppressing torque ripple :

d-axis(reactive power axis)for suppressing d-axis harmonic currents :

Rotor harmonic voltage reference :

$$\boldsymbol{U}_{rdq}^{m} = \boldsymbol{G}_{rpc}(s)(\boldsymbol{I}_{sdh}^{*} - \boldsymbol{I}_{sdh}) + j\boldsymbol{G}_{rpc}(s)(\boldsymbol{T}_{e}^{*} - \boldsymbol{T}_{e})$$

Total rotor voltage reference :

$$U_{rdq}^* = U_{rdq}^{PI} - U_{rdq}^m + j\sigma L_r \omega_{sl} I_{rdq}$$

$$U_{rq}^{m} = G_{rpc}(s)(T_{e}^{*}-T_{e})$$

$$U_{_{rd}}^{_{m}}=G_{_{rpc}}(s)(I_{_{sdh}}^{*}-I_{_{sdh}})$$

Double-axis direct resonant control strategy

Wu Chao, Nian Heng. Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of DFIG-DC system[J]. IEEE Transactions on Power Electronics, accepted, 2018 WinGrid

Performance analysis of double-axis direct resonant control strategy

d-axis harmonic current has no relationship with torque ripple

WinGrid Mini-course

WinGrid

 Harmonic currents comparison between different direct resonant control strategies

WinGrid

 Harmonic currents comparison between different direct resonant control strategies

Double-axis direct resonant control can effectively reduce harmonic currents;

WinGrid Mini-course

WinGrid

Comparison between different methods

Performance Method	torque ripple suppression	parameter dependency	harmonic current mitigation
Indirect resonant control [13]	effective	high	no
Conventional direct resonant control [14]-[16]	effective	low	no
Predictive control [17] [20]	effective	high	no
Double-axis direct resonant control	effective	low	yes

Double-axis direct resoant control can simultaneously suppress torque ripple and reduce harmonic currents

Chao Wu, Heng Nian. Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of DFIG-DC system[J]. IEEE Transactions on Power Electronics, vol. 34, no.9, pp. 8739-8748, Sep. 2019.

Experimental results of double-axis direct resonant control strategy

The THD of stator and rotor current and torque with different control methods

THD	Without resonant	Conventional direct	Improved direct
	control	resonant control	resonant control
Stator current	24.23%	22.45%	8.44%
Rotor current	16.55%	15.32%	6.35%
Torque	5.86%	0.95%	0.94%

Experimental results of double-axis direct resonant control strategy

Double-axis direct resonant control method can simultaneously mitigate the torque ripple and harmonic currents during dynamic process

Recap of DFIG-DC system

Existing methods-Stator Flux Orientated Control

Stator flux angle control [1]

WinGrid

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$

Stator flux PLL [4]

WinGrid Mini-course

Objectives

- Vector control
- Decoupling control of stator frequency and output power

Drawbacks

- Dc sampling offset
- Parameter dependency
- Stator voltage and current sensors

Reference

[1] G.D. Marques and M.F. Iacchetti, Stator Frequency Regulation in a Field-Oriented Controlled DFIG Connected to a DC Link. *IEEE Transactions on Industrial Electronics*, 2014. 61(11): p. 5930-5939.
[2] M.F. Iacchetti, Marques G.D. and R. Perini, Torque Ripple Reduction in a DFIG-DC System by Resonant Current Controllers. *IEEE Transactions on Power Electronics*, 2015. 30(8): p. 4244-4254.
[3] H. Nian, C. Wu and P. Cheng, Direct Resonant Control Strategy for Torque Ripple Mitigation of DFIG Connected to DC Link through Diode Rectifier on Stator. *IEEE Transactions on Power Electronics*, 2017. 32(9): p. 6936-6945.

[4] C. Wu and H. Nian, An Improved Repetitive Control of DFIG-DC System for Torque Ripple Suppression. *IEEE Transactions on Power Electronics*, 2018. 33(9): p. 7634-7644.

| 2021.05.17 | SLIDE **85**

Unique characteristics

- The stator power is proportional with the magnitude of rotor current
- The stator power can also be controlled by the angle

- **Robust control methods**
- Stator power-rotor current magnitude control method
- Stator power-rotor current angle control method

Power-magnitude control of DFIG-DC system without stator side sensors

Power-magnitude control scheme of RSC

Control Methods

- Power-current magnitude control method
- Stator frequency is flexibly given
- Without stator side sensors

C. Wu, Y. Jiao, H. Nian, F. Blaabjerg, "A Simplified Stator Frequency and Power Control Method of DFIG-DC System Without Stator Voltage and Current Sensors", *IEEE Trans. on Power Electron.*, vol. 35, no. 6, pp. 5562-5566, Jun. 2020.

Step response of stator frequency change

Power-angle control of DFIG-DC system without stator side sensors

Power-angle control scheme of RSC

Control Methods

- Power-current angle control method
- Acquirng stator frequency through power loop
- Without stator side sensors

C. Wu, P. Cheng, H. Nian and F. Blaabjerg, "Rotor Current Oriented Control Method of DFIG-DC System Without Stator Side Sensors," in IEEE Transactions on Industrial Electronics, vol. 67, no. 11, pp. 9958-9962, Nov. 2020.

Step response of stator frequency change

Unified power control of DFIG-DC system

DFIG connected to a DC link using diode rectifier

Steady-state equivalent circuit of the DFIG-DC system

Unified power reference

$$P_{ssum} = \alpha P_{dc} + P_{s}^{*} = \alpha \frac{k_{pv} s + k_{iv}}{s} \left(V_{dc}^{*} - V_{dc} \right) + P_{s}^{*}$$

Coefficient related to $\alpha = \alpha$

- Two operation modes
- Grid-connected mode
 Objective: MPPT control
- Stand-alone mode
 Objective: DC voltage control

$$P_{s} = \operatorname{Re}(\boldsymbol{U}_{s}\boldsymbol{I}_{s}) = \frac{L_{m}}{L_{s}}|\boldsymbol{U}_{s}||\boldsymbol{I}_{r}|\cos\delta$$
$$V_{dc} = \frac{\pi}{2}|\boldsymbol{U}_{s}| = \frac{\pi}{2}\omega_{s}L_{m}|\boldsymbol{I}_{r}|\sin\delta$$

The detailed block diagram of power and dc voltage control

| 2021.05.17 | SLIDE 89

Unified power control of DFIG-DC system

Unified power control method of RSC

Control Methods

- Dc voltage and stator power can both be controlled through the unified power.
- Stator frequency is flexibly given.
- Both in grid-connected and stand-alone mode.

Experimental results of DFIG from grid connected to standalone mode

Experimental results of DFIG from standalone to grid connected mode

Conclusion

- Due to the stator side diode bridge, the stator voltage and current are almost in same phase, which indicates that there is naturally no reactive power in the stator side of DFIG.
- The power-magnitude and power-angle control methods are simple and effective, which can avoid the using of stator side sensors.
- This sensorless control method can improve the robustness and reliability of DFIG-DC system.
- □ The unified power control strategy can make the DFIG-DC system works well in both grid-connected mode and stand-alone mode.

References

- 1. Chao Wu, Dao Zhou and Frede Blaabjerg, "Direct Power Magnitude Control of DFIG-DC System Without Orientation Control", IEEE Trans. on Ind. Electron., vol. 68, no. 2, pp. 1365-1373, Feb. 2021.
- 2. Heng Nian, Chao Wu, Peng Cheng, "Direct Resonant Control Strategy for Torque Ripple Mitigation of DFIG Connected to DC Link through Diode Rectifier on Stator", IEEE Trans. on Power Electron., vol. 32, no. 9, pp. 6936-6945, Sep. 2017.
- 3. Chao Wu, Dao Zhou, Peng Cheng, Frede Blaabjerg, "A Novel Power-Angle Control Method of DFIG-DC System Based on Regulating Air Gap Flux Vector", IEEE Trans. on Power Electron., vol. 36, no. 1, pp. 513-521, Jan. 2021.
- 4. Chao Wu, Peng Cheng, Frede Blaabjerg, "A Unified Power Control Method for Standalone and Grid Connected DFIG-DC System", IEEE Trans. on Power Electron., vol. 35, no. 12, pp. 12663-12667, Dec. 2020.
- 5. Chao Wu, Yingzong jiao, Heng Nian, Frede Blaabjerg, "A Simplified Stator Frequency and Power Control Method of DFIG-DC System Without Stator Voltage and Current Sensors", IEEE Trans. on Power Electron., vol. 35, no. 6, pp. 5562-5566, Jun. 2020.
- 6. Chao Wu, Peng Cheng, Heng Nian, Frede Blaabjerg. "Rotor Current Oriented Control Method of DFIG-DC System Without Stator Side Sensors", IEEE Trans. on Ind. Electron., vol. 67, no. 11, pp. 9958-9962, Nov. 2020.
- 7. Chao Wu, Heng Nian, "Improved direct resonant control for suppressing torque ripple and reducing harmonic current losses of DFIG-DC system", IEEE Trans. on Power Electron., vol. 34, no.9, pp. 8739-8748, Sep. 2019.
- 8. Chao Wu, Heng Nian, Bo Pang, Peng Cheng, "Adaptive Repetitive Control of DFIG-DC System Considering Stator Frequency Variation", IEEE Trans. on Power Electron., vol. 34, no. 4, pp. 3302-3312, Apr. 2019.
- 9. Chao Wu, Heng Nian, "An Improved Repetitive Control of DFIG-DC System for Torque Ripple Suppression", IEEE Trans. on Power Electron., vol. 33, no.9, pp. 7634-7644, Sep. 2018.
- 10. Chao Wu, Heng Nian. "Sinusoidal current operation of DFIG-DC system without stator voltage sensors", IEEE Trans. on Ind. Electron., vol. 65, no.8, pp. 6250-6258, Aug. 2018.
- 11. Chao Wu, Heng Nian, "Stator Harmonic Currents Suppression for DFIG Based on Feed-Forward Regulator Under Distorted Grid Voltage", IEEE Trans. on Power Electron., vol. 33, no. 2, pp. 1211-1224, Feb. 2018

Thank you for your attention! Questions & Comments ?

Chao Wu

Email: cwu@et.aau.dk

