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Outline

Solar PV energy
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Energy resource
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Solar energy – High potential to supply the energy demand
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State of the Art – Renewable Evolution
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Global Renewable Energy Annual Changes in Gigawatt (2000-2019)

(more than 2500 GW in total)

1. Hydropower also includes pumped storage and mixed plants;

2. Marine energy covers tide, wave, and ocean energy

3. Solar includes photovoltaics and solar thermal

4. Wind includes both onshore and offshore wind energy

(Source: IRENA, “Renewable energy capacity statistics 2020”, http://www.irena.org/publications, March 2020)

http://www.irena.org/publications
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State of the Art – New Total Annual Additions
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RES and non-RES as a share of the net total annual additions

(Source: IRENA, “Renewable Capacity Highlights”, https://www.irena.org/-

/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Highlights_2020.pdf?la=en&hash=B6BDF8C3306D271327729B

9F9C9AF5F1274FE30B, March 2020)
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State of the Art Development – PV Power
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 More significant total capacity (29 % non-hydro renewables).

 Fastest growth rate (22 % between 2018-2020, 33% in 2018).

Global installed solar PV capacity (until 2019): 586 GW, 2019: 97 GW
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State of the Art Development – PV Power
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 More significant total capacity (29 % non-hydro renewables).

 Fastest growth rate (22 % between 2018-2020, 33% in 2018).

Global installed solar PV capacity (until 2019): 586 GW, 2019: 97 GW
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Future Target
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In 2017, DOE’s Solar Energy Technologies Office (SETO) announced that the industry had 

achieved the 2020 cost goal for utility-scale solar of 6¢ per kilowatt hour (kWh).

Increasing competitiveness by lowering Cost of Energy

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or 

state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010–17.
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How to integrate?
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General Photovoltaic power conversion (grid integration)

 Photovoltaic Effect
Power generation is dependent on the ambient conditions

 Power Electronics 
Power converters are essential to realize the power transfer

 Power Grid 
Synchronous generator governed system with fixed freq. and voltage
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Example
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Residential application
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Example
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Utility application
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Outline

Basic PV modeling
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PV cell-module-panel-array
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Many PV Modules are used to form panels, and then arrays

 Series-connected solar cells (as PV module)

 Series-connection of PV modules for higher voltage

 Parallel-connection of PV modules for higher current 

https://en.wikipedia.org/wiki/Solar_cell#/media/File:From_a_solar_cell_to_a_PV_system.svg
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PV module structure

14
https://blog.ibc-solar.com/2018/09/new-module-technologies-lhs-half-cut-mbb/
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PV cell technology
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Major type of solar panels

https://www.solarmarket.com.au/residential-solar/different-types-of-panels/
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PV cell technology

16

Major type of solar panels

Solar panel type Advantages Disadvantages

Monocrystalline
• High efficiency/performance

• Aesthetics
• Higher costs

Polycrystalline • Low cost
• Lower

efficiency/performance

Thin-film

• Portable and flexible

• Lightweight

• Aesthetics

• Lowest

efficiency/performance

https://www.energysage.com/solar/101/types-solar-panels/
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State of the Art – PV Cell Technologies
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Race of efficiency
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Top 10 most efficient PV panels (2021)
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No. Manufacurer Model Power Efficiency

1 SunPower Maxeon 3 400 W 22.6 %

2 LG Neon R 380 W 22.0 %

3 REC Alpha 380 W 21.7 %

4 FuturaSun FU M Zebra 360 W 21.3 %

5 Panasonic EverVolt 370 W 21.2 %

6 Trina Solar Vertex S 405 W 21.1 %

7 Jinko Solar Tiger Pro 6Rl3 390 W 20.7 %

8 Q cells Q.Peak DUO G9 360 W 20.6 %

9 Winaico WST-375MG 375 W 20.6 %

10 Longi Solar Hi-Mo 4 375 W 20.6 %

https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels
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Solar cell operating principle
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Photovoltaic effect
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PV cell models
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Ideal model of a PV cell – most PV cells can be modelled as a P-N junction
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PV cell models
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Ideal model of a PV cell
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PV cell models are based on the Shockley diode equation

0 1t

V

V

phI I I e
 

   
 
 

t

kT
V

q


0

- photo-generated current     

 - dark saturation current         

 - cell thermal voltage

 - Boltzmann's constant

 - Temperature ( K)

 - Charge of an electron

ph

t

I

I

V

k

T

q

 

 

I

V

Isc

VocVRB



WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

PV cell models
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+ Better accuracy
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- Increased complexity

- No analytic solutions for model parameters

Four-parameter model

Five-parameter model

Five, six or seven-parameter model

phI D

DI
V

IsR



WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

Electrical characteristic – P-V curve
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Standard Test Condition (STC)
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• Irradiance level of 1000 W/m2

• Spectral irradiance distribution corresponding to Air Mass (AM) 1.5

• Junction temperature 25 C 
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Outline

Power Converters for PV
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Demands on PV Systems

25

Power converter – key enabling technology for PV integration
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Top global Photovoltaic inverter supplier
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Global Market Share of Top PV Inverter Suppliers (2012-2015)

https://www.pv-magazine.com/2020/04/29/huawei-sungrow-and-sma-dominate-global-inverter-market/
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PV inverter system configurations
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 Single-phase

 Hundreds watts

 Small systems

Module Converter DC Grid String/Multistring Converter Central Inverter

 DC grid  AC grid

 Single-/three-phase

 Several kilowatts

 Small systems /

resisdential

 Single-/three-phase

 1~30 kW applications

 Residential/commercial

 Three-phase

 30~ kW

 Commercial /

utility-scale

Chapter 03 in Renewable energy devices and systems with simulations in MATLAB and ANSYS, Editors: F. Blaabjerg and D.M. Ionel, 

CRC Press LLC, 2017 
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Market size of different PV configuration
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Center and String Inverters are dominating the market

(market share in respect to the central inverter – the base value)
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Examples

29

Central inverter solution

ABB MW Solution

Sungrow Solution
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Examples

30

Central inverter solution
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Examples
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String inverter solution

Rooftop-installed PV systems: (a) PV arrays with a total rating of 60 kW installed on the

roof of Aalborghus High School in Denmark and (b) power electronic converters with the schematic 

are installed within the building and are connected to the AC grid.
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Examples

32

Microinverter solution
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String inverter configurations
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Transformer-based grid-connection

 Galvanic isolation

 Bulky
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String inverter configurations
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Transformerless grid-connection 

 Higher efficiency

 Smaller volume
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String inverter topologies
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Basic Pulse-width modulation

Full-Bridge inverter
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Pulse-width modulation techniques

36

Bipolar PWM Unipolar PWM
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Hybrid PWM
Leg A is switched with high frequency and

Leg B is switched with grid frequency

Bipolar PWM
S1 + S4 and S2 + S3 are switched 

complementary at high frequency 

Unipolar PWM
Leg A and B are switched with high 

frequency with mirrored sinusoidal ref. 

1kHz triangular wave and 50Hz sinusoidal reference
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String inverter topologies
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 No common mode voltage  free for high frequency  low leakage current

 Max efficiency 96.5% due to reactive power exchange between the filter and CP during freewheeling 

and due to the fact that 2 switched are simultaneously switched every switching

 This topology is not special suited to transformerless PV inverter due to low efficiency!

Bipolar Modulation is used: 

Full-Bridge inverter
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Transformerless string PV inverters
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H5 Transformerless inverter

 Efficiency of up to 98%

 Low leakage current and EMI

 Unipolar voltage across the filter, leading to low core losses
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Transformerless string PV inverters
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H6 Transformerless inverter

 High efficiency 

 Low leakage current and EMI

 DC bypass switches rating: Vdc/2

 Unipolar voltage across the filter
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Transformerless string PV inverters
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HERIC – highly efficiency and reliability inverter concept

 High efficiency of up to 97%

 Very low leakage current & EMI

 Low core losses
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Transformerless string PV inverters
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FB-ZVR – full-bridge zero-voltage rectifier inverter

 Efficiency of up to 96%

 Low leakage current and EMI

 Unipolar voltage across the filter, leading to low core losses
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Transformerless string PV inverters
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Multilevel Inverters for transformerless applications

 Constant voltage-to-ground  Low leakage current, suitable for

transformerless PV applications.

 High DC-link voltage ( > twice of the grid peak voltage)
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Transformerless string PV inverters
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Multilevel Inverters for transformerless applications

 Constant voltage-to-ground  Low leakage current, suitable for

transformerless PV applications.

 High DC-link voltage ( > twice of the grid peak voltage)
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String PV inverters
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Other String Inverters – two-stage

 Single-phase double-stage with a boost converter and a full-bridge inverter

 Half-bridge converter with a parallel-input series-output converter 
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String PV inverters

45

Multistring Inverters – to process more power

 Series connection of multiple PV string DC-DC converters

 Parallel connection of multiple PV string DC-DC converters
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String PV inverters
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Multistring Inverters – to process more power

 Series connection of multiple PV string DC-DC converters

 Parallel connection of multiple PV string DC-DC converters
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Central inverters
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Towards Even Higher Power Capacity with central inverters

 Large PV power plants, rated over several MWs, adopt many central inverters with the 

power rating of up to 900 kW.

 DC-DC converters can be optionally used before the central inverters.

 Similar to wind turbine applications  NPC topology might be a promising solution. 
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Central inverters
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Towards Even Higher Power Capacity with central inverters

Three-phase two-level central inverter
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Central inverters
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Towards Even Higher Power Capacity with central inverters

Three-phase I-type NPC central inverters
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Central inverters
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Towards Even Higher Power Capacity with central inverters

Three-phase T-type NPC central inverters
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1500-V DC PV systems
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Becoming the Mainstream Solution to LV PV systems!

 Decreased requirement of the balance of system (e.g., combiner boxes, DC wiring, and 

converters) and Less installation efforts

 Contributes to reduced overall system cost and increased efficiency

 More energy production and lower cost of energy

 Electric safety and potential induced degradation

 Converter redesign – higher rating power devices
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Outline

Control of PV Inverters

53
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Control requirements for PV systems
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General Requirements & Specific Requirements
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General control structure for PV systems
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Basic functions –

all grid-tied inverters

► Grid current control

► DC voltage control

► Grid synchronization

PV specific functions –

common for PV inverters

► Maximum power point tracking – MPPT

► Anti-Islanding (VDE0126, IEEE1574, etc.)

► Grid monitoring

► Plant monitoring

► Sun tracking (mechanical MPPT)

Ancillary support –

in effectiveness

► Voltage control

► Fault ride-through 

► Power quality

► …
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Maximum Power Point Tracking (MPPT)
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Role of MPPT

• PV array characteristic is non-linear  MPP

• MPP depends on environmental conditions  the operating point needs to be adjusted 

to follow weather conditions 
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Maximum Power Point Tracking (MPPT)
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MPPT should keep the operating point at MPP in all conditions
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Implementation of MPPT control
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Single-stage system

Two-stage system (in the DC-DC converter)
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MPPT for single-stage PV inverters
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MPPT directly controls the AC 

current

MPPT controls the DC voltage 

AC current is controlled through a 

DC voltage controller

Power feedforward enhances the 

dynamics of the MPPT
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MPPT for two-stage PV inverters
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• MPPT controls the boost ratio of 

the DC/DC converter

• DC link voltage is controlled by 

Inverter

• Power feed-forward can be used

GridPV array
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• Regardless of system topology, or output reference, most MPPT today 

share similar algorithm
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Perturb and Observe (P&O) – Most widely used MPPT method
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MPPT algorithm

62

Perturb and Observe (P&O) – Most widely used MPPT method

Advantages: 

• Simple, low computational demand

• Generic – applicable for most systems 

Disadvantages: 

• Trade-off between speed and accuracy

• Can track in wrong way dusing fast 

changing conditions
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MPPT algorithm

63

Incremental Conductance (INC) – Monitoring the slope of the P-V curve
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MPPT algorithm

64

Constant Voltage method (CV) – Approximation of Voc/Vmp ratio

ocV
mpV

* Heribert Schmidt, Bruno Burger, Ulrich Bussemas, Stephan Elies: “HOW FAST DOES AN MPP TRACKER REALLY 

NEED TO BE?“, 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany

Source: *

• CV relies on the fact that the voltage changes only a little with irradiation

• For a wide range of irradiations Vmp is about 76% of Voc for crystalline modules
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MPPT algorithm

65

Constant Voltage method (CV) – Approximation of Voc/Vmp ratio

ocV
mpV

* Heribert Schmidt, Bruno Burger, Ulrich Bussemas, Stephan Elies: “HOW FAST DOES AN MPP TRACKER REALLY 

NEED TO BE?“, 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany

Source: *

Advantages: 

• Simplicity

• No ripple due to perturbation 

Disadvantages: 

• Energy is wasted during Voc measurement

• Vmp/Voc is not always 0.76
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MPPT algorithm

66

Hybrid method – Combination of Hill-climbing and CV methods
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At low irradiation levels:

• The P-V characteristic becomes ’flatter’ 

the signal-to-noise ratio decreases in hill-

climbing methods  efficiency decreases

• The efficiency of CV is not affected 
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*Cristinel Dorofte, Uffe Borup, Frede Blaabjerg: ” A Combined Two-method MPPT Control Scheme For Grid-

connected Photovoltaic Systems”, EPE 2005, Dresden
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MPPT summary

67

MPPT Methods Advantages Disadvantages

Perturb & Observe (P&O) /
Incremental Conductance

• Simple
• Low computation
• Generic

• Tradeoff beteween speed and 
accuracy

• Goes to the wrong way under fast 
changing conditions

Constant Voltage (CV)
• Much simple
• No ripple due to perturbation

• Energy is wasted during Voc 
measurement

• Inaccuracy

Short-Current Pulse 
(SCP, i.e., constant current) 

• Simple
• No ripple due to perturbation

• Extra swith needed for short-
circuiting

• Inaccuracy

Ripple Correlation Control
• Ripple amplitude provides the 

MPP information
• Noneed for perturbation

• Tradeoff between efficiency loss 
due to MPPT or to the ripple

P&O – the most commonly used MPPT algorithm!
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Example of MPPT control

68

Experiments of P&O on 3-kW PV system
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MPPT in partial shading
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Power-voltage curve under partial shadow – multiple peaks

P(V) characteristics
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• P-V curve of a PV array affecting 25% 

of its surface as changing from no 

shadow to 90% reduction of irradiance 
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• P-V curve of a PV array as increasing 

the shadowed area from non-

shadowed condition to fully shadowed. 

Irradiance on shadowed area is 

reduced to 50% of full irradiance
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MPPT in partial shading
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• Hill-climbing MPP trackers stop tracking at finding the first local maxima

*Roland BRUENDLINGER1; Benoît BLETTERIE; Matthias MILDE; Henk OLDENKAMP3: “MAXIMUM POWER 

POINT TRACKING PERFORMANCE UNDER PARTIALLY SHADED PV ARRAY CONDITIONS”, 21st EUPVSEC
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MPPT in partial shading
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IV curve sweeping

START

Set Operating point to Open-cicuit 

Sweep array characteristic

Sample V, I

Determine Pmp and Vmp

END

Set new operating point to Vmp

Idle

P(V) characteristics

Voltage

P
o

w
e

r

IV curve sweeping is the only generally-accepted method today  

that can reliably find the MPP in case of partial shadow

Disadvantage: energy is wasted during the sweep
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MPPT design consideration

72

Tracking speed – MPPT should follow environmental changes

• MPPT voltage adjustment speed of ~1% of MPP 

voltage per second is enough for most conditions  tracker

100
MP

dV V
s V / s

dt


[1] Heribert Schmidt, Bruno Burger, Ulrich Bussemas, Stephan Elies: “How fast does an MPP tracker really need to

be?“, 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany
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MPPT design consideration
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Speed and accuracy of hill-climbing MPPT

PERTURBATION

AMPLITUDE

steady state

oscillations



converter

dynamics

environmental

conditions

/environmental

SNR

PERTURBATION

FREQUENCY

• In practice, perturbation frequency varies 

between 0.5-20Hz

• To ensure fast enough response to 

environmental conditions, voltage adjustment 

speed: 

100

mpVdV
s

dt


For example: 

5

1
500 5

MPPT

mp

f Hz

dV VdV
V V V s

dt

 

 

   

• Sampling period should be long enough for allowing the system to reach steady state before next 

perturbation – depends on the dynamics of the converter used

• Perturbation frequency should be high enough to follow environmental changes

• Perturbation amplitude should be large enough that effects caused by perturbation are not 

diminished by system noise

• Perturbation amplitude is limited by steady state oscillations around MPP (steady state efficiency)
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MPPT efficiency

74

Testing MPPT efficiency (EN50530 standard)

• Dynamic MPPT efficiency can be tested using trapezoidal irradiance profiles

* H. Haeberlin and Ph. Schaerf: “New Procedure for Measuring Dynamic MPP-Tracking Efficiency at Grid-

Connected PV Inverters”, EUPVSEC 2009, Hamburg
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Control of single-phase PV systems
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Dual-loop control systems:
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Control of three-phase PV systems
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Dual-loop control systems:

System Schematic

DC-link control Control in the different reference frames
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Current control of PV inverters

77

 Outer control loop for proper reference generation;

 Current controller responsible for current shaping.

o Power quality concern

o Harmonics from PV inverters

o Harmonic control in the current controller
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Harmonic control

78

Harmonic compensation – different current controllers
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Harmonic control

79

Experimental results – harmonic compensation from PV inverters
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Outline

Advanced power control of PV Inverters

80
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Grid integration challenges

81

Intermittency of PV power production: Power regulation capability?
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Grid integration challenges

82

Intermittency of PV power production: Power regulation capability?
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More challenges

83

 Overloading at peak power generation (voltage rise, transformer saturation)

 Equipment operation failures/issues (feeder regulation, load tap changes, switched 

capacitor banks, etc)

 Demand and energy management (masking peak demand, unbalancing)

 System protection (relay desensitization, breaker, unidirectional islanding)

 Power quality (harmonics, flickers)

 …

Overloading !

Challenges with a high penetration of PV systems
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PV inverter control

84

Advanced control – Flexible active power control

Almost all demands  Controlling PV converters

Flexible Active Power  Control             
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Overview of active power control

85

Solution:

• Power limiting control (PLC) – Overloading during peak power generation period

• Power ramp-rate control (PRRC) – Grid voltage fluctuation

• Power reserve control (PRC) – Limited frequency regulation capability

[1] Energinet.dk, “Technical regulation 3.2.2 for PV power plants with a power output above 11 kW,” 2015.

Time

Active Power

Power Reserve 

Control

Power Limiting 
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Power Ramp-
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MPPT Control
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Power limiting control strategy 

86

Concept

• Limit maximum extracted PV power Ppv to a certain power limit level Plimit

• During low solar irradiance (Pavai ≤ Plimit) : MPPT operation

• During high solar irradiance (Pavai > Plimit) : Reduce the extracted PV power according 

to the set-point
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Power limiting control strategy (2/3)

87

MPPT pv limit*

pv

pv step pv limit

,       when  

, when  

v P P
v

v v P P


 

 

Operational principle: Perturbing the operating point along the horizontal line of the power 

limit level

PV voltage reference:

vMPPT: reference voltage from MPPT algorithm, vstep: Perturbation step size
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Power limiting control strategy

88

Example:

 Power limit level Plimit = 1.5 kW (50 %)

Clear day Cloudy day
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Power ramp-rate control strategy 

89

Concept
• Limit PV power change rate dPpv/dt = Rr(t) to a certain limit R*

r

• During slow changing solar irradiance (Rr(t) ≤ R*
r) : MPPT operation

• During fast changing solar irradiance (Rr(t) > R*
r) : Reduce the extracted PV power 

following the ramp rate constraint



WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

Power ramp-rate control strategy 

90

Operational principle: Perturbing the operating point away from the MPP once the power ramp 

rate exceeds the maximum limit

PV voltage reference:

*

MPPT*

pv *

pv step

,       when  ( )

, when  ( )

r r

r r

v R t R
v

v v R t R

 
 

 

vMPPT: reference voltage from MPPT algorithm, vstep: Perturbation step size
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Clear day Cloudy day

Power ramp-rate control strategy 

91

Example:

 Ramp rate limit R*
r = 10 W/second
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Power reserve control strategy 

92

Concept
• Regulating the extracted PV power Ppv below the available power Pavai with the amount 

of power reserve ∆P

Ppv = Pavai - ∆P

• Special case of power limiting control (e.g., Plimit = Pavai - ∆P)

• Need to estimate the available PV power during operation
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Power reserve control strategy 

93

Operational principle: Perturbing the operating point away from the MPP with respect to the 

available power

PV voltage reference:

MPPT pv avai*

pv

pv step pv avai

,       when  

, when  

v P P P
v

v v P P P

  
 

   

vMPPT: reference voltage from MPPT algorithm, vstep: Perturbation step size
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Clear day Cloudy day

Power reserve control strategy 

94

Example:

 Power reserve level ∆P = 200 W (activated when Ppv > 2 kW)
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