Control of Photovoltaic Systems

Ariya Sangwongwanich

Department of Energy Technology Aalborg University, Denmark <u>ars@et.aau.dk</u>

Solar PV energy

Energy resource

Solar energy – High potential to supply the energy demand

State of the Art – Renewable Evolution

Global Renewable Energy Annual Changes in Gigawatt (2000-2019) (more than **2500** GW in total)

- 1. Hydropower also includes pumped storage and mixed plants;
- 2. Marine energy covers tide, wave, and ocean energy
- 3. Solar includes photovoltaics and solar thermal
- 4. Wind includes both onshore and offshore wind energy

(Source: IRENA, "Renewable energy capacity statistics 2020", http://www.irena.org/publications, March 2020)

State of the Art – New Total Annual Additions

RES and non-RES as a share of the net total annual additions

(Source: IRENA, "Renewable Capacity Highlights", https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Mar/IRENA_RE_Capacity_Highlights_2020.pdf?la=en&hash=B6BDF8C3306D271327729B 9F9C9AF5F1274FE30B, March 2020)

State of the Art Development – PV Power

Global installed solar PV capacity (until 2019): **586** GW, 2019: **97** GW

- More significant total capacity (29 % non-hydro renewables).
- Fastest growth rate (22 % between 2018-2020, 33% in 2018).

State of the Art Development – PV Power

Global installed solar PV capacity (until 2019): **586** GW, 2019: **97** GW

- More significant total capacity (29 % non-hydro renewables).
- Fastest growth rate (22 % between 2018-2020, 33% in 2018).

Future Target

Increasing competitiveness by lowering Cost of Energy

In 2017, DOE's Solar Energy Technologies Office (SETO) announced that the industry had achieved the 2020 cost goal for utility-scale solar of 6¢ per kilowatt hour (kWh).

*Levelized cost of electricity (LCOE) progress and targets are calculated based on average U.S. climate and without the ITC or state/local incentives. The residential and commercial goals have been adjusted for inflation from 2010–17.

How to integrate?

General Photovoltaic power conversion (grid integration)

Photovoltaic Effect

Power generation is dependent on the ambient conditions

Power Electronics

Power converters are essential to realize the power transfer

Power Grid

Synchronous generator governed system with fixed freq. and voltage

Residential application

Utility application

Basic PV modeling

PV cell-module-panel-array

Many PV Modules are used to form panels, and then arrays

- Series-connected solar cells (as PV module)
- Series-connection of PV modules for higher voltage
- Parallel-connection of PV modules for higher current

PV module structure

https://blog.ibc-solar.com/2018/09/new-module-technologies-lhs-half-cut-mbb/

PV cell technology

Major type of solar panels

https://www.solarmarket.com.au/residential-solar/different-types-of-panels/

Major type of solar panels

Solar panel type	Advantages	Disadvantages	
Monocrystalline	High efficiency/performanceAesthetics	Higher costs	
Polycrystalline	Low cost	Lower efficiency/performance	
Thin-film	Portable and flexibleLightweightAesthetics	Lowest efficiency/performance	

https://www.energysage.com/solar/101/types-solar-panels/

State of the Art – PV Cell Technologies

Race of efficiency

Best Research-Cell Efficiencies

Top 10 most efficient PV panels (2021)

No.	Manufacurer	Model	Power	Efficiency
1	SunPower	Maxeon 3	400 W	22.6 %
2	LG	Neon R	380 W	22.0 %
3	REC	Alpha	380 W	21.7 %
4	FuturaSun	FU M Zebra	360 W	21.3 %
5	Panasonic	EverVolt	370 W	21.2 %
6	Trina Solar	Vertex S	405 W	21.1 %
7	Jinko Solar	Tiger Pro 6RI3	390 W	20.7 %
8	Q cells	Q.Peak DUO G9	360 W	20.6 %
9	Winaico	WST-375MG	375 W	20.6 %
10	Longi Solar	Hi-Mo 4	375 W	20.6 %

https://www.cleanenergyreviews.info/blog/most-efficient-solar-panels

Solar cell operating principle

Photovoltaic effect

Ideal model of a PV cell – most PV cells can be modelled as a P-N junction

PV cell models

PV cell models are based on the Shockley diode equation

PV cell models

Five, six or seven-parameter model

- + Simplicity
- + Analytic solutions for parameters
- Limited accuracy

- + Better accuracy
- Increased complexity
- No analytic solutions for model parameters
- + Better accuracy, especially at low irradiations
- Increased complexity
- No analytic solutions for model parameters

Electrical characteristic – P-V curve

Standard Test Condition (STC)

- Irradiance level of 1000 W/m²
- Spectral irradiance distribution corresponding to Air Mass (AM) 1.5
- Junction temperature 25 C

Power Converters for PV

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

Demands on PV Systems

Power converter – key enabling technology for PV integration

Top global Photovoltaic inverter supplier

Global PV inverter shipments, 2019 (MW)

* Estimate Source: Wood Mackenzie

Ginlong Solis TBEA Sunoasis* Chint Power Systems All Others

Global Market Share of Top PV Inverter Suppliers (2012-2015)

https://www.pv-magazine.com/2020/04/29/huawei-sungrow-and-sma-dominate-global-inverter-market/

PV inverter system configurations

Chapter 03 in *Renewable energy devices and systems with simulations in MATLAB and ANSYS*, Editors: F. Blaabjerg and D.M. Ionel, CRC Press LLC, 2017

Market size of different PV configuration

Center and String Inverters are dominating the market

(market share in respect to the central inverter – the base value)

Central inverter solution

ABB MW Solution

Sungrow Solution

Central inverter solution

String inverter solution

Rooftop-installed PV systems: (a) PV arrays with a total rating of 60 kW installed on the roof of Aalborghus High School in Denmark and (b) power electronic converters with the schematic are installed within the building and are connected to the AC grid.

Microinverter solution

Transformer-based grid-connection

- \rightarrow Galvanic isolation
- \rightarrow Bulky

Transformerless grid-connection

- → Higher efficiency
- → Smaller volume

String inverter topologies

Basic Pulse-width modulation

Pulse-width modulation techniques

Unipolar PWM Bipolar PWM Leg A and B are switched with high S1 + S4 and S2 + S3 are switched frequency with mirrored sinusoidal ref. complementary at high frequency S₁ S2 S3 (^^) Vtri $(\Lambda \Lambda)$ Vtri Vref Vref **Bipolar PWM Unipolar PWM** Reference and Carrier Signals Reference and Carrier Signals 0.005 0.02 0.025 0.03 0.035 0.04 0 0.005 0.015 0.02 0.025 0 0.01 0.015 0.01 Output voltage Output voltage -1 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0 0.005 0.01 0.015 0.02 0.025 1kHz triangular wave and 50Hz sinusoidal reference

Hybrid PWM

Leg A is switched with high frequency and Leg B is switched with grid frequency

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

S2

0.03

0.03

0.035

0.035

0.04

0.04
String inverter topologies

Full-Bridge inverter

Bipolar Modulation is used:

- □ <u>No common mode voltage</u> \rightarrow free for high frequency \rightarrow low leakage current
- □ Max efficiency 96.5% due to reactive power exchange between the filter and C_P during freewheeling and due to the fact that 2 switched are simultaneously switched every switching
- □ This topology is not special suited to transformerless PV inverter due to low efficiency!

H5 Transformerless inverter

- Efficiency of up to 98%
- Low leakage current and EMI
- Unipolar voltage across the filter, leading to low core losses

H6 Transformerless inverter

- High efficiency
- Low leakage current and EMI
- DC bypass switches rating: Vdc/2
- Unipolar voltage across the filter

Transformerless string PV inverters

HERIC – highly efficiency and reliability inverter concept

- High efficiency of up to 97%
- Very low leakage current & EMI
- Low core losses

FB-ZVR – full-bridge zero-voltage rectifier inverter

- Efficiency of up to 96%
- Low leakage current and EMI
- Unipolar voltage across the filter, leading to low core losses

Multilevel Inverters for transformerless applications

- Constant voltage-to-ground → Low leakage current, suitable for transformerless PV applications.
- High DC-link voltage (> twice of the grid peak voltage)

Multilevel Inverters for transformerless applications

- Constant voltage-to-ground → Low leakage current, suitable for transformerless PV applications.
- High DC-link voltage (> twice of the grid peak voltage)

String PV inverters

Other String Inverters – two-stage

- Single-phase double-stage with a boost converter and a full-bridge inverter
- Half-bridge converter with a parallel-input series-output converter

Multistring Inverters – to process more power

- Series connection of multiple PV string DC-DC converters
- Parallel connection of multiple PV string DC-DC converters

Multistring Inverters – to process more power

- Series connection of multiple PV string DC-DC converters
- Parallel connection of multiple PV string DC-DC converters

> Large PV **power plants**, rated over several MWs, adopt many central inverters with the

power rating of up to 900 kW.

- > DC-DC converters can be optionally used before the central inverters.
- Similar to wind turbine applications \rightarrow NPC topology might be a promising solution.

Three-phase two-level central inverter

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

Three-phase I-type NPC central inverters

Three-phase T-type NPC central inverters

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

1500-V DC PV systems

Becoming the **Mainstream Solution** to LV PV systems!

- Decreased requirement of the balance of system (e.g., combiner boxes, DC wiring, and converters) and Less installation efforts
- Contributes to reduced overall system cost and increased efficiency
- More energy production and lower cost of energy
- Electric safety and potential induced degradation
- Converter redesign higher rating power devices

Control of PV Inverters

Control requirements for PV systems

General Requirements & Specific Requirements

General control structure for PV systems

all grid-tied inverters

- Grid current control
- DC voltage control
- Grid synchronization

common for PV inverters

- Maximum power point tracking MPPT
- Anti-Islanding (VDE0126, IEEE1574, etc.)
- Grid monitoring
- Plant monitoring
- Sun tracking (mechanical MPPT)

in effectiveness

- Voltage control
- Fault ride-through
- Power quality

Maximum Power Point Tracking (MPPT)

Role of MPPT

- PV array characteristic is non-linear \rightarrow MPP
- MPP depends on environmental conditions → the operating point needs to be adjusted to follow weather conditions

Maximum Power Point Tracking (MPPT)

MPPT should keep the operating point at MPP in all conditions

Single-stage system

Two-stage system (in the DC-DC converter)

MPPT for single-stage PV inverters

MPPT for two-stage PV inverters

Regardless of system topology, or output reference, most MPPT today share similar algorithm

Perturb and Observe (P&O) – Most widely used MPPT method

Perturb and Observe (P&O) – Most widely used MPPT method

Advantages:

- Simple, low computational demand
- Generic applicable for most systems

Disadvantages:

- Trade-off between speed and accuracy
- Can track in wrong way dusing fast changing conditions

Incremental Conductance (INC) – Monitoring the slope of the P-V curve

Constant Voltage method (CV) – Approximation of Voc/Vmp ratio

- CV relies on the fact that the voltage changes only a little with irradiation
- For a wide range of irradiations V_{mp} is about 76% of V_{oc} for crystalline modules

* Heribert Schmidt, Bruno Burger, Ulrich Bussemas, Stephan Elies: "HOW FAST DOES AN MPP TRACKER REALLY NEED TO BE?", 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany

Constant Voltage method (CV) – Approximation of Voc/Vmp ratio

Advantages:

Disadvantages:

- Simplicity
- No ripple due to perturbation

- Energy is wasted during V_{oc} measurement
- V_{mp}/V_{oc} is not always 0.76

* Heribert Schmidt, Bruno Burger, Ulrich Bussemas, Stephan Elies: "HOW FAST DOES AN MPP TRACKER REALLY NEED TO BE?", 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany

Hybrid method – Combination of Hill-climbing and CV methods

At low irradiation levels:

- The P-V characteristic becomes 'flatter'
 →the signal-to-noise ratio decreases in hillclimbing methods → efficiency decreases
- The efficiency of CV is not affected

*Cristinel Dorofte, Uffe Borup, Frede Blaabjerg: " A Combined Two-method MPPT Control Scheme For Gridconnected Photovoltaic Systems", EPE 2005, Dresden

MPPT Methods	Advantages	Disadvantages
Perturb & Observe (P&O) / Incremental Conductance	SimpleLow computationGeneric	 Tradeoff beteween speed and accuracy Goes to the wrong way under fast changing conditions
Constant Voltage (CV)	Much simpleNo ripple due to perturbation	 Energy is wasted during Voc measurement Inaccuracy
Short-Current Pulse (SCP, i.e., constant current)	SimpleNo ripple due to perturbation	 Extra swith needed for short- circuiting Inaccuracy
Ripple Correlation Control	 Ripple amplitude provides the MPP information Noneed for perturbation 	 Tradeoff between efficiency loss due to MPPT or to the ripple

P&O – the most commonly used MPPT algorithm!

Example of MPPT control

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

MPPT in partial shading

Power-voltage curve under partial shadow – multiple peaks

- P-V curve of a PV array affecting 25% of its surface as changing from no shadow to 90% reduction of irradiance
- P-V curve of a PV array as increasing the shadowed area from nonshadowed condition to fully shadowed. Irradiance on shadowed area is reduced to 50% of full irradiance

MPPT in partial shading

• Hill-climbing MPP trackers stop tracking at finding the first local maxima

*Roland BRUENDLINGER1; Benoît BLETTERIE; Matthias MILDE; Henk OLDENKAMP3: "MAXIMUM POWER POINT TRACKING PERFORMANCE UNDER PARTIALLY SHADED PV ARRAY CONDITIONS", 21st EUPVSEC 70

MPPT in partial shading

IV curve sweeping

Disadvantage: energy is wasted during the sweep

IV curve sweeping is the only generally-accepted method today that can reliably find the MPP in case of partial shadow

Tracking speed – MPPT should follow environmental changes

MPPT voltage adjustment speed of ~1% of MPP ۰ voltage per second is enough for most conditions

[1] Heribert Schmidt, Bruno Burger, Ulrich Bussemas, Stephan Elies: "How fast does an MPP tracker really need to be?", 24th European Photovoltaic Solar Energy Conference, 21-25 September 2009, Hamburg, Germany 72
MPPT design consideration

Speed and accuracy of hill-climbing MPPT

- Sampling period should be long enough for allowing the system to reach steady state before next perturbation depends on the dynamics of the converter used
- Perturbation frequency should be high enough to follow environmental changes
- Perturbation amplitude should be large enough that effects caused by perturbation are not diminished by system noise
- Perturbation amplitude is limited by steady state oscillations around MPP (steady state efficiency)

MPPT efficiency

Testing MPPT efficiency (EN50530 standard)

• Dynamic MPPT efficiency can be tested using trapezoidal irradiance profiles

* H. Haeberlin and Ph. Schaerf: "New Procedure for Measuring Dynamic MPP-Tracking Efficiency at Grid-Connected PV Inverters", EUPVSEC 2009, Hamburg

Control of single-phase PV systems

Dual-loop control systems:

Control in the dq-frame

Control in the $\alpha\beta$ -frame

Control of three-phase PV systems

Dual-loop control systems:

Current control of PV inverters

- Outer control loop for proper reference generation;
- Current controller responsible for current shaping.
 - Power quality concern
 - o Harmonics from PV inverters
 - Harmonic control in the current controller

Harmonic control

Harmonic compensation – different current controllers

Magnitude responses of different current controllers

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

Harmonic control

Experimental results – harmonic compensation from PV inverters

Advanced power control of PV Inverters

Grid integration challenges

Intermittency of PV power production: Power regulation capability?

Grid integration challenges

Intermittency of PV power production: Power regulation capability?

WinGrid mini-course | Ariya Sangwongwanich | June 1, 2021

More challenges

. . .

Challenges with a high penetration of PV systems

- Overloading at peak power generation (voltage rise, transformer saturation)
- Equipment operation failures/issues (feeder regulation, load tap changes, switched capacitor banks, etc)
- Demand and energy management (masking peak demand, unbalancing)
- System protection (relay desensitization, breaker, unidirectional islanding)
- Power quality (harmonics, flickers)
 - B C NEWS ORTHERN IRELAND arts of Northern Ireland's electricity grid overloade Overloading ! David Maxwell its of Northern Ireland's electricity network are becoming overloa ans that those wanting to become green power producers are being told they ca ning as businesses and homes embrace the savings and guaranteed green subsidies which renewables offer orthern Ireland where the grid is at saturation point or approaching it and it will be impossible for small-scale projects to get the go-ahead until substations and lines are upgrade ems are experienced in the west - demonstrated clearly on a heat map produced by NIE. Northern Ireland Electricity (NIE) said the uptake of small scale generation has been unprecedented. ves introduced back in 2010 were potentially quite lucrative for some of these developers and they naturally did wish to embrace them," he said incentives and what the network was actually physically capable of doing wasn't fully taken account of at that time and that has resulted in us getting into some difficulties no s Ballyness Caravan Park in Bushmil ted to install a 50 kilowatt (kw) solar array (group of solar panels), but has been told he can only go ahead with 20 kilowatt because his local substation cannot cope with more p ing when the government is really pushing for carbon reducing renewables and then when you try to do it you are held up at every opportunity." Mr Dunlop said eved the 50kw installations would have shaved a third off his £30,000 electricity bill nore Farm Meats near Omaph, wants to power his business with solar panels - any excess electricity would be transferred back onto the orid, but he has been told the lines in his area are saturated and he can't on ahead with his small scale renew. iting to reduce our costs, beefs going up, it has to go up, so we have to look at how we can be more efficient and this is what we are met with," he said n (UFU), said farmers and small businesses were encouraged to take up small scale generation but their plans are now pointless upgrades and that's actually infrastructure upgrades for NIE and so they are getting quotes three or four times their project outlay which makes it unviable," he sai

PV inverter control

Advanced control – Flexible active power control

Almost all demands \rightarrow Controlling PV converters

Overview of active power control

Solution:

- Power limiting control (PLC) Overloading during peak power generation period
- Power ramp-rate control (PRRC) Grid voltage fluctuation
- Power reserve control (PRC) Limited frequency regulation capability

[1] Energinet.dk, "Technical regulation 3.2.2 for PV power plants with a power output above 11 kW," 2015.

Power limiting control strategy

Concept

- Limit maximum extracted PV power P_{pv} to a certain power limit level P_{limit}
- During low solar irradiance ($P_{avai} \leq P_{limit}$) : MPPT operation
- During high solar irradiance (P_{avai} > P_{limit}) : Reduce the extracted PV power according to the set-point

Power limiting control strategy (2/3)

Operational principle: Perturbing the operating point along the horizontal line of the power limit level

PV voltage reference:

$$v_{pv}^{*} = \begin{cases} v_{MPPT}, & \text{when } P_{pv} \leq P_{\text{limit}} \\ v_{pv} - v_{\text{step}}, & \text{when } P_{pv} > P_{\text{limit}} \end{cases}$$

 v_{MPPT} : reference voltage from MPPT algorithm, v_{step} : Perturbation step size

Power limiting control strategy

Example:

Power limit level P_{limit} = 1.5 kW (50 %)

Power ramp-rate control strategy

Concept

- Limit PV power change rate $dP_{pv}/dt = R_r(t)$ to a certain limit R_r^*
- During slow changing solar irradiance $(R_r(t) \leq R_r^*)$: MPPT operation
- During fast changing solar irradiance $(R_r(t) > R_r^*)$: Reduce the extracted PV power following the ramp rate constraint

Power ramp-rate control strategy

Operational principle: Perturbing the operating point away from the MPP once the power ramp rate exceeds the maximum limit

PV voltage reference:

$$v_{\text{pv}}^* = \begin{cases} v_{\text{MPPT}}, & \text{when } R_r(t) \le R_r^* \\ v_{\text{pv}} - v_{\text{step}}, & \text{when } R_r(t) > R_r^* \end{cases}$$

 v_{MPPT} : reference voltage from MPPT algorithm, v_{step} : Perturbation step size

Power ramp-rate control strategy

Example:

• Ramp rate limit $R_r^* = 10$ W/second

Power reserve control strategy

Concept

• Regulating the extracted PV power P_{pv} below the available power P_{avai} with the amount of power reserve ΔP

$$P_{\rm pv} = P_{\rm avai} - \Delta P$$

- Special case of power limiting control (e.g., $P_{\text{limit}} = P_{\text{avai}} \Delta P$)
- Need to estimate the available PV power during operation

Power reserve control strategy

Operational principle: Perturbing the operating point away from the MPP with respect to the available power

PV voltage reference:

$$v_{pv}^{*} = \begin{cases} v_{MPPT}, & \text{when } P_{pv} \leq P_{avai} - \Delta P \\ v_{pv} - v_{step}, & \text{when } P_{pv} > P_{avai} - \Delta P \end{cases}$$

 v_{MPPT} : reference voltage from MPPT algorithm, v_{step} : Perturbation step size

Power reserve control strategy

Example:

• Power reserve level $\Delta P = 200$ W (activated when $P_{pv} > 2$ kW)

References

Further reading

- R. Teodorescu, M. Liserre, and P. Rodríguez, Grid Converters for Photovoltaic and Wind Power Systems. Piscataway, NJ: IEEE Press/Wiley, 2011.
- F. Blaabjerg, R. Teodorescu, M. Liserre, and A. V. Timbus, "Overview of control and grid synchronization for distributed power generation systems," IEEE Trans. Ind. Electron., vol. 53, no. 5, pp. 1398–1409, Oct. 2006
- S. Kouro, J. I. Leon, D. Vinnikov and L. G. Franquelo, "Grid-Connected Photovoltaic Systems: An Overview of Recent Research and Emerging PV Converter Technology," in IEEE Industrial Electronics Magazine, vol. 9, no. 1, pp. 47-61, March 2015, doi: 10.1109/MIE.2014.2376976.
- T. Kerekes, M. Liserre, R. Teodorescu, C. Klumpner, and M. Sumner, "Evaluation of three-phase transformerless photovoltaic inverter topologies," IEEE Trans. Power Electron., vol. 24, no. 9, pp. 2202–2211, Sep. 2009
- B. Burger and D. Kranzer, "Extreme high efficiency PV-power converters," in Proc. 13th European Conf. Power Electronics and Applications (EPE 2009), 8–10 Sept. 2009, pp. 1–13.
- S. Kjaer, J. Pedersen, and F. Blaabjerg, "A review of single-phase grid-connected inverters for photovoltaic modules," IEEE Trans. Ind. Applicat., vol. 41, no. 5, pp. 1292–1306, Sept.–Oct. 2005.
- Häberlin, Heinrich. Photovoltaics: system design and practice. John Wiley & Sons, 2012.
- N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, Power Electronics and Control Techniques for Maximum Energy Harvesting in Photovoltaic Systems. Boca Raton, FL, USA: CRC Press, 2012.
- N. Femia, G. Petrone, G. Spagnuolo, and M. Vitelli, "Optimization of perturb and observe maximum power point tracking method," IEEE Trans. Power Electron., vol. 20, no. 4, pp. 963–973, Jul. 2005.
- T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques," in *IEEE Transactions on Energy Conversion*, vol. 22, no. 2, pp. 439-449, June 2007, doi: 10.1109/TEC.2006.874230.
- Y. Yang, K. A. Kim, F. Blaabjerg, and A. Sangwongwanich, "Advances in Grid-Connected Photovoltaic Power Conversion Systems". Cambridge, England, UK: Woodhead Publishing, 2018, p. 213.
- A. Sangwongwanich, Y. Yang and F. Blaabjerg, "High-Performance Constant Power Generation in Grid-Connected PV Systems," IEEE Trans. Power Electron., vol. 31, no. 3, pp. 1822-1825, Mar. 2016.
- Q. Peng, A. Sangwongwanich, Y. Yang, and F. Blaabjerg, "Flexible Active Power Control Strategies for Grid-Friendly Integration of Smart Photovoltaic Systems without Energy Storage," Solar Energy.

Acknowledgement

Prof. Frede Blaabjerg (Aalborg University) Assoc. Prof. Tamas Kerekes (Aalborg University)

Prof. Yongheng Yang (Zhejiang University)

Assoc. Prof. Dezso Sera (Queensland University of Technology)

<u>www.et.aau.dk</u> https://www.et.aau.dk/research-programmes/photovoltaic-systems/

Thank you for your attention!

Ariya Sangwongwanich ars@et.aau.dk

Questions?

